Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Isaia is active.

Publication


Featured researches published by Marco Isaia.


Environmental Entomology | 2006

Influence of Landscape Diversity and Agricultural Practices on Spider Assemblage in Italian Vineyards of Langa Astigiana (Northwest Italy)

Marco Isaia; Francesca Bona; Guido Badino

Abstract The purpose of this study was to investigate spider assemblages of the Italian vineyards of Langa Astigiana (northwest Italy). Pitfall trapping and standardized hand collecting were combined to have an overall idea of the spider fauna living in this agroecosystem. A total of 138 samples for pitfall sampling and 92 for hand collecting sites were collected at 23 different times over a period of 2 yr (2003 and 2004). The vineyards differ mainly from agricultural practices (certified organic production, production according to EEC’s Council Regulation 2092/91 on biological agriculture and intensive production) and for the heterogeneity of landscape matrix surrounding them. We studied the influence of these two factors on spider assemblages applying canonical correspondence analysis and multiresponse permutation procedures (MRPPs). Significant results of MRPP were analyzed in terms of hunting strategies. Significant differences are found among groups according to both landscape heterogeneity and agricultural practices, the first resulting more significantly. Analyzed in terms of hunting strategies, an increase in landscape heterogeneity seems to provide an increase in ambush spiders and specialized predators, whereas an increase in sheet web weavers seems to be related to homogeneous landscapes.


Biodiversity and Conservation | 2009

The impact of forest ski-pistes on diversity of ground-dwelling arthropods and small mammals in the Alps

Matteo Negro; Marco Isaia; Claudia Palestrini; Antonio Rolando

Forest clearing for winter sport activities is the major force driving loss and fragmentation of the alpine forests. The establishment of ski-pistes involves impacts on every ecosystem component. To assess the extent of this threat we studied ground-dwelling arthropods (namely ground beetles and spiders) and small mammals (shrews and voles) at two ski resorts in north-western Italian Alps by pitfall trapping. Diversity parameters (mean abundance, species richness and Shannon index) of spiders and macropterous carabids increased from forest interior to open habitats (i.e., ski-piste or pasture), whereas parameters of brachypterous carabids significantly decreased from forest interior to open habitats. Diversity parameters of macropterous ground beetles were higher on pastures than on ski-pistes. Small mammals were virtually absent from ski-pistes. Observed frequencies in the three adjacent habitats were significantly different from expected ones for the bank vole Myodes glareolus and the pygmy shrew Sorex minutus. Generalized linear models showed that abundance, species richness and diversity of spiders and macropterous carabids of ski-pistes were best modelled by combination of factors, including grass cover and width of the ski-piste. Indicator Species Analysis showed that species that significantly preferred ski-pistes were less than those preferring pastures, and species which were exclusive of ski-pistes were very few. To retain arthropod ground-dwelling fauna of open habitats environmentally friendly ways of constructing pistes should be developed. After tree clearing, only the roughest ground surfaces should be levelled, in order to preserve as much natural vegetation as possible. Where necessary, ski-pistes should be restored through the recovery of local vegetation.


The Holocene | 2011

Arthropod colonisation of a debris-covered glacier

Mauro Gobbi; Marco Isaia; Fiorenza De Bernardi

The largest debris-covered glacier in the Alps (Miage Glacier, western Italian Alps) has been studied to explore the effects of debris-cover extent and depth on the spatial distribution of ground-dwelling arthropods. A multitaxa approach has been used to compare taxa richness and distribution to the functional role (dietary habits) of each taxon along the glacier tongue. Spiders and ground beetles have been studied in detail. Taxa richness declines with distance from the wooded sites (in front of the glacier tongue) to those above the glacier tongue. At each of the supraglacial sites, spiders, ground beetles, aphids, springtails and flies were found. A change in the dominance of the different functional roles was observed along the tongue. Wooded sites are characterised by predatory (e.g. spiders, beetles), detrivore (e.g. springtails and certain flies), phytophagous (e.g. aphids, certain beetles) and parasitoid (e.g. certain wasps) assemblages, whereas at the debris-covered sites, aphids, flies and springtails are likely to be prey for spiders and beetles. The species richness of the predominant predators (spiders and beetles) shows a positive relationship with vegetation cover and debris thickness. Two mutually exclusive spider and ground beetle assemblages were found; one within the debris cover and one within the wooded sites. In our opinion, debris-covered glaciers are acting as a refuge area for the cryophil stenotherm species living at higher altitudes which descend the glacial tongue to lower elevations. A similar hypothesis supports the biogeographical interpretation of the distribution of many boreo-alpine relict species in the Alps. We discuss our results in the light of possible future scenarios which suggest an increase in debris cover with global warming.


Journal of Theoretical Biology | 2009

Spiders as biological controllers in the agroecosystem.

Samrat Chatterjee; Marco Isaia; Ezio Venturino

In this paper, we propose a general model consisting of insects, pests and spiders interacting in an agroecosystem included in a typical homogeneous rural landscape, characterized by a continuous mosaic of cultivated land and a few small patches of grasslands and small woods bounding the fields. The model is general enough to show all the phenomena observed in the agroecosystem. The role of the spider population as a biological controller in the agroecosystem is particularly emphasized. Human intervention by means of pesticide spraying and its relationship with the biological pest controllers is also accounted for.


Global Change Biology | 2017

A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes

Elinor M. Lichtenberg; Christina M. Kennedy; Claire Kremen; Péter Batáry; Frank Berendse; Riccardo Bommarco; Nilsa A. Bosque-Pérez; Luísa G. Carvalheiro; William E. Snyder; Neal M. Williams; Rachael Winfree; Björn K. Klatt; Sandra Åström; Faye Benjamin; Claire Brittain; Rebecca Chaplin-Kramer; Yann Clough; Bryan N. Danforth; Tim Diekötter; Sanford D. Eigenbrode; Johan Ekroos; Elizabeth Elle; Breno Magalhães Freitas; Yuki Fukuda; Hannah R. Gaines-Day; Heather Grab; Claudio Gratton; Andrea Holzschuh; Rufus Isaacs; Marco Isaia

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.


Biodiversity and Conservation | 2010

The impact of high-altitude ski pistes on ground-dwelling arthropods in the Alps

Matteo Negro; Marco Isaia; Claudia Palestrini; Axel Schoenhofer; Antonio Rolando

The development of winter sport resorts above the timberline may affect every ecosystem component. We analyzed the effect of ski-pistes on the abundance and species richness of arthropods (namely carabids, spiders, opilionids, and grasshoppers) trapped in grasslands adjacent to the ski-run, on ski-pistes and at the edge between these two habitat types. Our results showed that diversity of brachypterous carabids, spiders, and grasshoppers decreased significantly from natural grasslands to ski-pistes. This was not true for the macropterous carabid guild, which included species with contrasting ecological requirements. The analysis of indicator species (IndVal) showed that most of the species (some of them precinctive to restricted areas in the north-western Alps) had clear preferences for natural grassland and few taxa were limited to ski-pistes. Generalized linear models suggested that the local extent of grass and rock cover can significantly affect assemblages: the low grass cover of ski-pistes, in particular, was a serious hindrance to colonization by spider, grasshopper, brachypterous, and some macropterous carabid species. The results obtained, support concerns over the possible disruption of local ecosystem functionality and over the conservation of arthropod species which are endemic to restricted alpine areas. In order to retain arthropod ground-dwelling fauna we suggest that: (i) new, environmentally friendly ways of constructing pistes should be developed to preserve as much soil and grass cover as possible; (ii) existing ski-pistes should be restored through management to promote the recovery of local vegetation.


Ecological Entomology | 2014

Parasitoid genus-specific manipulation of orb-web host spiders (Araneae, Araneidae)

Stanislav Korenko; Marco Isaia; Jana Satrapová; Stanislav Pekár

Araneid spiders of genus Araniella are attacked by three polysphinctine parsitoid wasps Polysphincta boopsTschek, P. tuberose (Gravenhorst), and Sinarachna pallipes (Holmgren). In the present study, the trophic niche of sympatrically occurring parasitoids and the host manipulation they induced were studied. The aim was to identify whether the variation in host response to manipulation is as a result of differences among parasitoids or among host species. It was found that final instar larva forced the spider host to build a three‐dimensional (3D) ‘cocoon web’ to protect the parasitoid during pupation. The behaviour of parasitoid larva and the induced modification of the web architecture differed between wasps of genus Polysphincta and Sinarachna but not among three spider species. The larvae of genus Polysphincta forced the spider host to build the ‘cocoon web’ with a high thread density within which the pupa was positioned horizontally. The larvae of Sinarachna forced the spider host to build web with sparse threads and the pupa was positioned vertically in the middle of the ‘cocoon web’. There seems to be an investment trade‐off in parasitoid wasps: some species manipulate the host to build a dense protective web, while pupating in a sparse cocoon, whereas others make the spider produce a sparse web but build a dense pupa wall.


Journal of Insect Conservation | 2013

Grazing history influences biodiversity: a case study on ground-dwelling arachnids (Arachnida: Araneae, Opiliones) in the Natural Park of Alpi Marittime (NW Italy)

Mauro Paschetta; Valentina La Morgia; Dario Masante; Matteo Negro; Antonio Rolando; Marco Isaia

Alpine pastures are typical examples of “high nature value farmlands”, representing important habitats harbouring unique biological communities. Disturbance induced by overgrazing influences significantly ecosystem processes, in which invertebrates play a major role. To develop new models of sustainable management of pastures, more knowledge is needed of the animal communities, essential to the ecological functioning of pasture ecosystems. The apparent poor ecological state of several pastures in the Natural Regional Park of Alpi Marittime (NW-Italy) lead us to evaluate the influence of grazing history on biodiversity, using spider and harvestmen assemblages as key groups. Four different pastoral types characterized by four different grazing histories were identified using the Daget-Poissonet method. Spiders and harvestmen were collected by means of pitfall traps. Arachnid assemblages were characterized in terms of composition, abundance, species richness, richness of endemic species and taxonomic relatedness. Generalized linear mixed models (GLMM) were used to test differences among assemblages occurring in each pastoral type. Furthermore, we tested differences in terms of plant communities (species richness and percentage of zoogenic species). Specificity and fidelity of every spider and harvestmen species within pastoral types were explored by the IndVal (Indicator Value) procedure. Fifty-eight species of spiders and seven species of harvestmen were collected (2,304 individuals). Pastoral types related to intensive grazing were characterized by the dominance of diurnal wanderer spiders (namely Lycosidae) while, conversely, nocturnal wanderers (mainly Gnaphosidae) were more abundant in extensive pastoral types. Results show that both species richness and spider abundance were higher in abandoned areas of extensive grazing, while endemic assemblages were richer in extensive grazed areas, which also hosted the most diverse plant community. Furthermore, most of the indicator species of spiders of this type were endemic, characterized by more demanding ecological requirements.


PeerJ | 2015

Alpine endemic spiders shed light on the origin and evolution of subterranean species

Stefano Mammola; Marco Isaia; Miquel A. Arnedo

We designed a comparative study to unravel the phylogeography of two Alpine endemic spiders characterized by a different degree of adaptation to subterranean life: Troglohyphantes vignai (Araneae, Linyphiidae) and Pimoa rupicola (Araneae, Pimoidae), the latter showing minor adaptation to hypogean life. We sampled populations of the model species in caves and other subterranean habitats across their known geographical range in the Western Alps. By combining phylogeographic inferences and Ecological Niche Modeling techniques, we inferred the biogeographic scenario that led to the present day population structure of the two species. According to our divergent time estimates and relative uncertainties, the isolation of T. vignai and P. rupicola from their northern sister groups was tracked back to Middle–Late Miocene. Furthermore, the fingerprint left by Pleistocene glaciations on the population structure revealed by the genetic data, led to the hypothesis that a progressive adaptation to subterranean habitats occurred in T. vignai, followed by strong population isolation. On the other hand, P. rupicola underwent a remarkable genetic bottleneck during the Pleistocene glaciations, that shaped its present population structure. It seems likely that such shallow population structure is both the result of the minor degree of specialization to hypogean life and the higher dispersal ability characterizing this species. The simultaneous study of overlapping spider species showing different levels of adaptation to hypogean life, disclosed a new way to clarify patterns of biological diversification and to understand the effects of past climatic shift on the subterranean biodiversity.


International Journal of Speleology | 2014

Niche differentiation in Meta bourneti and M. menardi (Araneae, Tetragnathidae) with notes on the life history

Stefano Mammola; Marco Isaia

Meta menardi and M. bourneti are two species of spiders inhabiting caves and other subterranean habitats. The occurrence of both species within the same cave has never been proved convincingly and several authors hypothesized a complete niche differentiation mainly based on microclimatic conditions. In order to study the apparent niche differentiation of the two species, we studied several populations of M. menardi and M. bourneti occurring in six caves in the Western Italian Alps (NW Italy). A series of squared plots were monitored monthly from March 2012 to February 2013. At each survey, we counted individuals and we collected the main environmental variables at each plot, namely distance from cave entrance, structural typology (wall, floor, or ceiling), light intensity, wind speed and counts of potential prey. Moreover, temperature and relative humidity were continuously logged in each cave. We run several statistical models (GLMMs) in order to relate the counts of individuals to the environmental parameters. The distance from the cave entrance, structural typology and prey availability resulted most important factors driving the abundance of both species within the cave. On the other hand, despite life cycles appeared very similar, the two species seems to exhibit different tolerance to the microclimatic variations within the cave, which emerged as the main factors determining the differentiation of their niche. At least in our study area, M. bourneti tolerates broad microclimatic fluctuations and is potentially able to colonize a wide variety of caves. On the other hand, when the climatic conditions in a cave are suitable for M. menardi (narrow ranges of relatively low temperature and high humidity), M. bourneti is excluded.

Collaboration


Dive into the Marco Isaia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge