Marco Leibinger
University of Düsseldorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Leibinger.
The Journal of Neuroscience | 2009
Marco Leibinger; Adrienne Müller; Anastasia Andreadaki; Thomas G. Hauk; Matthias Kirsch; Dietmar Fischer
After optic nerve injury retinal ganglion cells (RGCs) normally fail to regenerate axons in the optic nerve and undergo apoptosis. However, lens injury (LI) or intravitreal application of zymosan switch RGCs into an active regenerative state, enabling these neurons to survive axotomy and to regenerate axons into the injured optic nerve. Several factors have been proposed to mediate the beneficial effects of LI. Here, we investigated the contribution of glial-derived ciliary neurotrophic factor (CNTF) to LI-mediated regeneration and neuroprotection using wild-type and CNTF-deficient mice. In wild-type mice, CNTF expression was strongly upregulated in retinal astrocytes, the JAK/STAT3 pathway was activated in RGCs, and RGCs were transformed into an active regenerative state after LI. Interestingly, retinal LIF expression was correlated with CNTF expression after LI. In CNTF-deficient mice, the neuroprotective and axon growth-promoting effects of LI were significantly reduced compared with wild-type animals, despite an observed compensatory upregulation of LIF expression in CNTF-deficient mice. The positive effects of LI and also zymosan were completely abolished in CNTF/LIF double knock-out mice, whereas LI-induced glial and macrophage activation was not compromised. In culture CNTF and LIF markedly stimulated neurite outgrowth of mature RGCs. These data confirm a key role for CNTF in directly mediating the neuroprotective and axon regenerative effects of inflammatory stimulation in the eye and identify LIF as an additional contributing factor.
The Journal of Neuroscience | 2011
Vetrivel Sengottuvel; Marco Leibinger; Mariana Pfreimer; Anastasia Andreadaki; Dietmar Fischer
Mature retinal ganglion cells (RGCs) cannot normally regenerate axons into the injured optic nerve but can do so after lens injury. Astrocyte-derived ciliary neurotrophic factor and leukemia inhibitory factor have been identified as essential key factors mediating this effect. However, the outcome of this regeneration is still limited by inhibitors associated with the CNS myelin and the glial scar. The current study demonstrates that Taxol markedly enhanced neurite extension of mature RGCs and PC12 cells by stabilization of microtubules and desensitized axons toward myelin and chondroitin sulfate proteoglycan (CSPG) inhibition in vitro without reducing RhoA activation. In vivo, the local application of Taxol at the injury site of the optic nerve of rats enabled axons to regenerate beyond the lesion site but did not affect the intrinsic regenerative state of RGCs. Furthermore, Taxol treatment markedly increased lens injury-mediated axon regeneration in vivo, delayed glial scar formation, suppressed CSPG expression, and transiently reduced the infiltration of macrophages at the injury site. Thus, microtubule-stabilizing compounds such as Taxol might be promising candidates as adjuvant drugs in the treatment of CNS injuries particularly when combined with interventions stimulating the intrinsic regenerative state of neurons.
Progress in Retinal and Eye Research | 2012
Dietmar Fischer; Marco Leibinger
Vision is the most important sense for humans and it is irreversibly impaired by axonal damage of retinal ganglion cells (RGCs) in the optic nerve due to the lack of axonal regeneration. The failure of regeneration is partially attributable to factors located in the inhibitory environment of the forming glial scar and myelin as well as an insufficient intrinsic ability for axonal regrowth. Moreover, RGCs undergo apoptotic cell death after optic nerve injury, eliminating any chance for regeneration. In this review, we discuss the different aspects that cause regenerative failure in the optic nerve. Moreover, we describe discoveries of the last two decades demonstrating that under certain circumstances mature RGCs can be transformed into an active regenerative state allowing these neurons to survive axotomy and to regenerate axons in the injured optic nerve. In this context we focus on the role of the cytokines ciliary neutrophic factor (CNTF) and leukemia inhibitory factor (LIF), their receptors and the downstream signaling pathways. Furthermore, we discuss strategies to overcome inhibitory signaling induced by molecules associated with optic nerve myelin and the glial scar as well as the regenerative outcome after combinatorial treatments. These findings are encouraging and may open the possibility that clinically meaningful regeneration may become achievable one day in the future.
Neurobiology of Disease | 2012
Marco Leibinger; Anastasia Andreadaki; Dietmar Fischer
Mature retinal ganglion cells (RGCs) do not normally regenerate injured axons, but degenerate after axotomy. However, inflammatory stimulation (IS) enables RGCs to survive axotomy and regenerate axons in the injured optic nerve. Similar effects are achieved by the genetic deletion of phosphatase and tensin homolog (PTEN) and subsequent mammalian target of rapamycin (mTOR) activation. Here, we report that IS prevents the axotomy-induced decrease of mTOR activity in RGCs in a CNTF/LIF-dependent manner. Inactivation of mTOR significantly reduced the number of long axons regenerating in the optic nerve, but surprisingly, did not affect the initial switch of RGCs into the regenerative state, or the neuroprotective effects associated with IS. In vitro, inhibition of mTOR activity reduced regeneration on myelin or chondroitin sulfate proteoglycans (CSPGs), but not on a growth-permissive substrate. Thus, mTOR activity is not generally required for neuroprotection or switching mature neurons into an active regenerative state, but it is important for the maintenance of the axonal growth state and overcoming of inhibitory effects caused by myelin and CSPGs.
Investigative Ophthalmology & Visual Science | 2010
Thomas G. Hauk; Marco Leibinger; Adrienne Müller; Anastasia Andreadaki; Uwe Knippschild; Dietmar Fischer
PURPOSE After injury of the optic nerve, mature retinal ganglion cells (RGCs) are normally unable to regenerate axons and undergo apoptosis. However, inflammatory stimulation in the eye induced by the release of beta/gamma-crystallins from the injured lens or intravitreal zymosan injection transforms RGCs into an active regenerative state, protecting these neurons from cell death and allowing them to regenerate axons back into the optic nerve. METHODS The authors tested whether intravitreal application of the selective, water-soluble, toll-like receptor 2 agonist Pam(3)Cys can delay axotomized RGC cell death and stimulate the regeneration of axons using an in vitro and in vivo paradigm. RESULTS Intravitreal injection of Pam(3)Cys, as lens injury (LI), induced the upregulation of ciliary neurotrophic factor and glial fibrillary acidic protein expression in retinal glia accompanied by the activation of the JAK/STAT3 pathway in RGCs. As a consequence, RGCs switched to a regenerative state, indicated by a significant upregulation of GAP43 expression and increased neurite outgrowth of RGCs in culture. Repeated intravitreal Pam(3)Cys application in vivo induced neuroprotective effects and caused stronger axon regeneration in the injured optic nerve than observed after LI. CONCLUSIONS Pam(3)Cys may be a suitable agent for stimulating CNS regeneration.
Neurobiology of Disease | 2013
Annemarie Heskamp; Marco Leibinger; Anastasia Andreadaki; Philipp Gobrecht; Heike Diekmann; Dietmar Fischer
Mature retinal ganglion cells (RGCs) do not normally regenerate injured axons, but undergo apoptosis soon after axotomy. Besides the insufficient intrinsic capability of mature neurons to regrow axons inhibitory molecules located in myelin of the central nervous system as well as the glial scar forming at the site of injury strongly limit axon regeneration. Nevertheless, RGCs can be transformed into a regenerative state upon inflammatory stimulation (IS), enabling these neurons to grow axons into the injured optic nerve. The outcome of IS stimulated regeneration is, however, still limited by the inhibitory extracellular environment. Here, we report that the chemokine CXCL12/SDF-1 moderately stimulates neurite growth of mature RGCs on laminin in culture and, in contrast to CNTF, exerts potent disinhibitory effects towards myelin. Consistently, co-treatment of RGCs with CXCL12 facilitated CNTF stimulated neurite growth of RGCs on myelin. Mature RGCs express CXCR4, the cognate CXCL12 receptor. Furthermore, the neurite growth promoting and disinhibitory effects of CXCL12 were abrogated by a specific CXCR4 antagonist and by inhibition of the PI3K/AKT/mTOR-, but not the JAK/STAT3-pathway. In vivo, intravitreal application of CXCL12 sustained mTOR activity in RGCs upon optic nerve injury and moderately stimulated axon regeneration in the optic nerve without affecting the survival of RGCs. Importantly, intravitreal application of CXCL12 also significantly increased IS triggered axon regeneration in vivo. These data suggest that the disinhibitory effect of CXCL12 towards myelin may be a useful feature to facilitate optic nerve regeneration, particularly in combination with other axon growth stimulatory treatments.
The Journal of Neuroscience | 2013
Barbara M. Braunger; Stefan Pielmeier; Cora Demmer; Victoria Landstorfer; Daniela Kawall; Natalie Abramov; Marco Leibinger; Ingo Kleiter; Dietmar Fischer; Herbert Jägle; Ernst R. Tamm
We investigated the influence of transforming growth factor-β (TGF-β) signaling on developmental programmed cell death in the mouse retina by direct and specific molecular targeting of TGF-β type II receptor (TβRII) and Smad7 in retinal progenitor cells. Mice were generated carrying a conditional deletion of the TβRII in cells that originate from the inner layer of the optic cup. The animals showed a significant decrease of phosphorylated Smad3 in both the central and peripheral retina, which indicates the diminished activity of TGF-β signaling. TβRII deficiency significantly increased the apoptotic death of retinal neurons during embryonic and postnatal development without affecting their proliferation. In contrast, treatment with TGF-β2 inhibited cell death of retinal ganglion cells in dissociated retinal cell cultures, an effect that was blocked by inhibiting the phosphorylation of Smad3. The increase in apoptosis during development resulted in a significant reduction in the number of neurons in adult TβRII-deficient mice. The effect was most pronounced in the inner retina neurons and resulted in functional deficits as determined by electroretinography. In contrast, a conditional deletion of TGF-β-inhibiting Smad7 in retinal neurons significantly enhanced Smad3 phosphorylation and significantly decreased apoptosis of retinal neurons in embryos and pups. Moreover, the number of retinal ganglion cells was significantly higher in Smad7-deficient mice compared with control littermates. TβRII-deficient pups showed a lower level of nerve growth factor (NGF) in its mRNA; however, higher levels were observed in Smad7-deficient pups, which strongly suggests that the protective effects of TGF-β signaling on developmental cell death are mediated through NGF.
Molecular Therapy | 2016
Marco Leibinger; Anastasia Andreadaki; Philipp Gobrecht; Evgeny Levin; Heike Diekmann; Dietmar Fischer
Retinal ganglion cells (RGCs) do not normally regenerate injured axons, but die upon axotomy. Although IL-6-like cytokines are reportedly neuroprotective and promote optic nerve regeneration, their overall regenerative effects remain rather moderate. Here, we hypothesized that direct activation of the gp130 receptor by the designer cytokine hyper-IL-6 (hIL-6) might induce stronger RGC regeneration than natural cytokines. Indeed, hIL-6 stimulated neurite growth of adult cultured RGCs with significantly higher efficacy than CNTF or IL-6. This neurite growth promoting effect could be attributed to stronger activation of the JAK/STAT3 and PI3K/AKT/mTOR signaling pathways and was also observed in peripheral dorsal root ganglion neurons. Moreover, hIL-6 abrogated axon growth inhibition by central nervous system (CNS) myelin. Remarkably, continuous hIL-6 expression upon RGC-specific AAV transduction after optic nerve crush exerted stronger axon regeneration than other known regeneration promoting treatments such as lens injury and PTEN knockout, with some axons growing through the optic chiasm 6 weeks after optic nerve injury. Combination of hIL-6 with RGC-specific PTEN knockout further enhanced optic nerve regeneration. Therefore, direct activation of gp130 signaling might be a novel, clinically applicable approach for robust CNS repair.
The Journal of Neuroscience | 2016
Philipp Gobrecht; Anastasia Andreadaki; Heike Diekmann; Annemarie Heskamp; Marco Leibinger; Dietmar Fischer
Functional recovery of injured peripheral neurons often remains incomplete, but the clinical outcome can be improved by increasing the axonal growth rate. Adult transgenic GSK3αS/A/βS/A knock-in mice with sustained GSK3 activity show markedly accelerated sciatic nerve regeneration. Here, we unraveled the molecular mechanism underlying this phenomenon, which led to a novel pharmacological approach for the promotion of functional recovery after nerve injury. In vitro and in vivo analysis of GSK3 single knock-in mice revealed the unexpected contribution of GSK3α in addition to GSK3β, as both GSK3S/A knock-ins improved axon regeneration. Moreover, growth stimulation depended on overall GSK3 activity, correlating with increased phosphorylation of microtubule-associated protein 1B and reduced microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide or cnicin mimicked this axon growth promotion in wild-type animals, although it had no effect in GSK3αS/A/βS/A mice. These results support the conclusion that sustained GSK3 activity primarily targets microtubules in growing axons, maintaining them in a more dynamic state to facilitate growth. Accordingly, further manipulation of microtubule stability using either paclitaxel or nocodazole compromised the effects of parthenolide. Strikingly, either local or systemic application of parthenolide in wild-type mice dose-dependently accelerated in vivo axon regeneration and functional recovery similar to GSK3αS/A/βS/A mice. Thus, reducing microtubule detyrosination in axonal tips may be a novel, clinically suitable strategy to treat nerve damage. SIGNIFICANCE STATEMENT Peripheral nerve regeneration often remains incomplete, due to an insufficient growth rate of injured axons. Transgenic mice with sustained GSK3 activity showed markedly accelerated nerve regeneration upon injury. Here, we identified the molecular mechanism underlying this phenomenon and provide a novel therapeutic principle for promoting nerve repair. Analysis of transgenic mice revealed a dependence on overall GSK3 activity and reduction of microtubule detyrosination in axonal tips. Pharmacological inhibition of detyrosination by parthenolide fully mimicked this axon growth promotion in wild-type mice. Strikingly, local or systemic treatment with parthenolide in vivo markedly accelerated axon regeneration and functional recovery. Thus, pharmacological inhibition of microtubule detyrosination may be a novel, clinically suitable strategy for nerve repair with potential relevance for human patients.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Marco Leibinger; Anastasia Andreadaki; Renate Golla; Evgeny Levin; Alexander M. Hilla; Heike Diekmann; Dietmar Fischer
Significance The role of GSK3 in axon regeneration is controversial. Whereas increased GSK3 activity accelerates peripheral nerve regeneration, it shows the opposite effect in the CNS. Moreover, KO/knockdown of GSK3β in growth-stimulated retinal ganglion cells (RGCs) was disinhibitory and potentiated optic nerve regeneration. This dichotomy was the result of a GSK3-dependent and CNS-specific inhibition of axonal CRMP2, which compromised RGCs’ ability for axon growth. As GSK3 inhibition, neuronal expression of constitutively active CRMP2 (CRMP2T/A) potentiated optic nerve regeneration and, strikingly, unmasked an axon growth-promoting effect of active GSK3 as in peripheral nerves. CRMP2T/A expression and GSK3 activation additively enabled extensive optic nerve regeneration, thereby reconciling conflicting data in GSK3-mediated axon regeneration and opening novel treatment possibilities for CNS repair. Implications of GSK3 activity for axon regeneration are often inconsistent, if not controversial. Sustained GSK3 activity in GSK3S/A knock-in mice reportedly accelerates peripheral nerve regeneration via increased MAP1B phosphorylation and concomitantly reduces microtubule detyrosination. In contrast, the current study shows that lens injury-stimulated optic nerve regeneration was significantly compromised in these knock-in mice. Phosphorylation of MAP1B and CRMP2 was expectedly increased in retinal ganglion cell (RGC) axons upon enhanced GSK3 activity, but, surprisingly, no GSK3-mediated CRMP2 inhibition was detected in sciatic nerves, thus revealing a fundamental difference between central and peripheral axons. Conversely, genetic or shRNA-mediated conditional KO/knockdown of GSK3β reduced inhibitory phosphorylation of CRMP2 in RGCs and improved optic nerve regeneration. Accordingly, GSK3β KO-mediated neurite growth promotion and myelin disinhibition were abrogated by CRMP2 inhibition and largely mimicked in WT neurons upon expression of constitutively active CRMP2 (CRMP2T/A). These results underscore the prevalent requirement of active CRMP2 for optic nerve regeneration. Strikingly, expression of CRMP2T/A in GSK3S/A RGCs further boosted optic nerve regeneration, with axons reaching the optic chiasm within 3 wk. Thus, active GSK3 can also markedly promote axonal growth in central nerves if CRMP2 concurrently remains active. Similar to peripheral nerves, GSK3-mediated MAP1B phosphorylation/activation and the reduction of microtubule detyrosination contributed to this effect. Overall, these findings reconcile conflicting data on GSK3-mediated axon regeneration. In addition, the concept of complementary modulation of normally antagonistically targeted GSK3 substrates offers a therapeutically applicable approach to potentiate the regenerative outcome in the injured CNS.