Marco Leona
Metropolitan Museum of Art
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Leona.
Accounts of Chemical Research | 2010
Francesca Casadio; Marco Leona; John R. Lombardi; Richard P. Van Duyne
Organic dyes extracted from plants, insects, and shellfish have been used for millennia in dyeing textiles and manufacturing colorants for painting. The economic push for dyes with high tinting strength, directly related to high extinction coefficients in the visible range, historically led to the selection of substances that could be used at low concentrations. But a desirable property for the colorist is a major problem for the analytical chemist; the identification of dyes in cultural heritage objects is extremely difficult. Techniques routinely used in the identification of inorganic pigments are generally not applicable to dyes: X-ray fluorescence because of the lack of an elemental signature, Raman spectroscopy because of the generally intense luminescence of dyes, and Fourier transform infrared spectroscopy because of the interference of binders and extenders. Traditionally, the identification of dyes has required relatively large samples (0.5-5 mm in diameter) for analysis by high-performance liquid chromatography. In this Account, we describe our efforts to develop practical approaches in identifying dyes in works of art from samples as small as 25 microm in diameter with surface-enhanced Raman scattering (SERS). In SERS, the Raman scattering signal is greatly enhanced when organic molecules with large delocalized electron systems are adsorbed on atomically rough metallic substrates; fluorescence is concomitantly quenched. Recent nanotechnological advances in preparing and manipulating metallic particles have afforded staggering enhancement factors of up to 10(14). SERS is thus an ideal technique for the analysis of dyes. Indeed, rhodamine 6G and crystal violet, two organic compounds used to demonstrate the sensitivity of SERS at the single-molecule level, were first synthesized as textile dyes in the second half of the 19th century. In this Account, we examine the practical application of SERS to cultural heritage studies, including the selection of appropriate substrates, the development of analytical protocols, and the building of SERS spectral databases. We also consider theoretical studies on dyes of artistic interest. Using SERS, we have successfully documented the earliest use of a madder lake pigment and the earliest occurrence of lac dye in European art. We have also found several examples of kermes and cochineal glazes, as well as madder, cochineal, methyl violet, and eosin lakes, from eras ranging from ancient Egypt to the 19th century. The ability to rapidly analyze very small samples with SERS makes it a particularly valuable tool in a museum context.
Journal of Forensic Sciences | 2009
B S Irina Geiman; Marco Leona; John R. Lombardi
Abstract: The applicability of Raman spectroscopy and surface‐enhanced Raman scattering (SERS) to the analysis of synthetic dyes commonly found in ballpoint inks was investigated in a comparative study. Spectra of 10 dyes were obtained using a dispersive system (633 nm, 785 nm lasers) and a Fourier transform system (1064 nm laser) under different analytical conditions (e.g., powdered pigments, solutions, thin layer chromatography [TLC] spots). While high fluorescence background and poor spectral quality often characterized the normal Raman spectra of the dyes studied, SERS was found to be generally helpful. Additionally, dye standards and a single ballpoint ink were developed on a TLC plate following a typical ink analysis procedure. SERS spectra were successfully collected directly from the TLC plate, thus demonstrating a possible forensic application for the technique.
Analytical Chemistry | 2012
Federica Pozzi; John R. Lombardi; Silvia Bruni; Marco Leona
The introduction of surface-enhanced Raman spectroscopy (SERS) in the field of cultural heritage has significantly improved the analysis of the organic dyes and their complexes that have been used as textile dyes and pigments in paintings and other polychrome works of art since antiquity. Over the last five years, a number of different procedures have been developed by various research groups. In this Article, we evaluate the effect of pretreating samples by exposing them to hydrofluoric acid (HF) vapor prior to SERS analysis, a step designed to hydrolyze the dye-metal complexes and increase analyte adsorption on the nanosized metallic support, thus enhancing the SERS signal. Materials studied include pure colorants, commercial lake pigments, and fibers from dyed textiles, as well as actual aged samples, such as microscopic fragments of lakes on paper and ancient pigments and glazes from several works of art, covering a wide range of time, from the second century B.C. to the early 20th century. In each case, SERS spectra obtained with or without HF hydrolysis were critically evaluated. The pretreatment with HF vapor resulted in faster analysis and increased sensitivity in most cases, with the exception of dyed silk fibers, where silk protein hydrolyzates were found to interfere with SERS analysis. As a final point, a two-step procedure including SERS on untreated and treated samples is proposed as a standard approach: by analyzing a sample first without hydrolysis, and then, following removal of the colloid, upon HF treatment, the best and most reliable results for a great number of dyes and substrates are assured.
Sensor Review | 2007
Kui Chen; Marco Leona; Tuan Vo-Dinh
Purpose – Identification and characterization of organic pigments and dyes used in works of art and cultural heritage material such as prints, drawings, manuscripts, paintings, and textiles can provide important information for dating, authentication, and conservation treatment of these objects and studying art history in general. Applications of surface‐enhanced Raman scattering (SERS) for this purpose have recently attracted increasing attention of both academic scientists and museum researchers. This paper aims to review the latest development involving the emerging applications of SERS for the analysis of organic pigments and dyes used in works of art and cultural heritage material.Design/methodology/approach – First, the importance of organic pigments and dyes in the studies of works of art and cultural heritage material and the challenges in their identification and characterization are briefly summarized. This is followed by a discussion on sampling considerations in the context of art and archaeol...
Journal of Forensic Sciences | 2011
Vinesh Rana; Maria V. Cañamares; Thomas Kubic; Marco Leona; John R. Lombardi
Abstract: We obtain the normal Raman and surface‐enhanced Raman spectrum of three controlled substances: morphine, codeine, and hydrocodone. The spectra are assigned with the aid of density functional theory. Because of rather intense fluorescence, normal Raman spectra suffer from poor signal‐to‐noise, even when differential subtraction techniques are employed. On the other hand, surface enhancement by Ag nanoparticles both enhances the Raman signal and suppresses the fluorescence, enabling far more sensitive detection and identification. We also present a set of discriminant bands, useful for distinguishing the three compounds, despite the similarities in their structures.
Journal of The American Institute for Conservation | 2004
Marco Leona; Francesca Casadio; Mauro Bacci; Marcello Picollo
Abstract UV-visible reflectance spectroscopy and Raman microspectroscopy provide a rapid way to unequivocally identify the pre-Columbian pigment Maya blue. Spectra of modern synthetic materials are compared with data from a contextualized archaeological sample and from an object in the collection of the Los Angeles County Museum of Art. UV-visible spectroscopy and Raman microspectroscopy, together with complementary techniques such as Fourier transform infrared microspectroscopy, reveal significant differences between spectra of indigo as pure crystalline solid or as complexed by palygorskite. These techniques are thus extremely specific, being able to identify Maya blue as a prepared pigment rather than detecting only its ingredients, indigo and palygorskite. Fiber optics UV-visible reflectance spectroscopy and Raman microspectroscopy present the additional advantage of being completely noninvasive and therefore suitable for the study of works of art. Lightweight portable fiber optics UV-visible reflectance spectroscopy devices make it possible to perform measurements in situ on wall paintings and other immovable objects. The spectral differences between pure indigo and the indigo-palygorskite complex can be interpreted in terms of different hydrogen bonding configurations for the indigo molecule.
Analytical Chemistry | 2013
Pablo Londero; John R. Lombardi; Marco Leona
Improved identification of trace organic compounds in complex matrixes is critical for a variety of fields such as material science, heritage science, and forensics. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can attain single-molecule sensitivity and has been shown to complement mass spectrometry, but lacks widespread application without a robust method that utilizes the effect. We demonstrate a new, highly sensitive, and widely applicable approach to SERS analysis based on laser ablation in the presence of a tailored plasmonic substrate. We analyze several challenging compounds, including non-water-soluble pigments and dyed leather from an ancient Egyptian chariot, achieving sensitivity as high as 120 amol for a 1:1 signal-to-noise ratio and 5 μm spatial resolution. This represents orders of magnitude improvement in spatial resolution and sensitivity compared to those of other SERS approaches intended for widespread application, greatly increasing the applicability of SERS.
Analytical Methods | 2013
Federica Pozzi; Simone Porcinai; John R. Lombardi; Marco Leona
The identification of organic colorants is of high importance in the cultural heritage field, where they are found as paint components and textile dyes, and in forensic science, because of their use in inks and paints, food colorants and textile dyes. Surface-enhanced Raman spectroscopy (SERS) has emerged as a promising technique for the detection of these materials, yet concerns over the sensitivity of SERS spectra of dyes to chemical and instrumental variables (such as pH, choice of SERS substrates and/or aggregants, and excitation wavelength) have prevented its widespread use in analytical applications. Over the last few years, the development of several microanalytical approaches has considerably increased the chances of success in the identification of minute amounts of dyes by SERS. However, the need for searchable databases is still largely to be fulfilled. In this work, we have assembled the core of a comprehensive library which contains 100 Raman and SERS reference spectra of natural and synthetic organic colorants. Experiments to classify 20 query SERS spectra of dyes from a variety of museum objects were conducted using principal component analysis (PCA) and the correlation coefficient (CC) algorithm. The effect of spectral transformations such as baseline correction, selecting a standard frequency range, normalization, smoothing, as well as carrying out the search on the second derivative of the spectra, was systematically evaluated. With this study we demonstrate that SERS spectra of organic colorants can be reliably matched against a well constructed spectral library regardless of the instrumentation and the colloids used, and of the pH conditions at which the measurements were carried out.
Angewandte Chemie | 2014
Anna Cesaratto; Marco Leona; John R. Lombardi; Daniela Comelli; Austin Nevin; Pablo Londero
Surface-enhanced Raman spectroscopy (SERS) has been increasingly used in the study of works of art to identify organic pigments and dyes in paintings, which (depending on the material) are difficult or not possible to detect by other current methods. The application of SERS to the study of paintings has been limited, however, by the lack of a sampling approach with sufficient sensitivity and spatial resolution. We show that ultraviolet laser ablation (LA) sampling coupled with SERS detection can be successfully used to study paint layers. LA-SERS permitted the isolation of signals from colorants in individual thin paint layers in sample cross-sections, avoiding contamination from adjacent layers. These results expand the range of analytical applications of SERS demonstrating how the technique can be used to sensitively detect minor organic components in complex matrices. While this is fundamental for the study of cultural heritage, it is also relevant in other fields such as forensic analysis, food science, and pharmacology.
Heritage Science | 2013
Federica Pozzi; John R. Lombardi; Marco Leona
BackgroundWinsor & Newton Ltd. has been one of the main fine art products providers since its establishment in 1832, being responsible for the manufacture of a wide assortment of materials ranging from oils and pigments to brushes and papers. All the items produced over the years have been indexed in a comprehensive historical archive. Original Winsor & Newton handbooks are a powerful resource which can offer insight into the world of artists’ materials, and knowledge of artists’ choices through the identification of substances employed to obtain particular colors. Scientific analyses of various kinds have been carried out on Winsor & Newton art materials over the years; however, a detailed study of the organic dyes contained in the watercolors manufactured by the company has never been performed thus far to our knowledge.ResultsIn the present study, we examined a number of color washes on drawing paper from two historical Winsor & Newton catalogues dating to the 19th and 20th century. An appropriate database was thus built, including surface-enhanced Raman scattering (SERS) and Raman spectra of organic colorants from a wide variety of shades. While the selection of colors offered by the company in the 19th century mostly included lakes prepared from plant and insect dyes, i.e. madder and cochineal, some tints based on synthetic dyes were also found in the 20th century handbook.ConclusionsThe present article sheds new light on the chemical composition of a number of original Winsor & Newton color washes in terms of organic colorants contained in each shade. A special attention was dedicated to the analysis of those colors for which the formulation was ambiguous or not specified by the manufacturers, such as dragons’ blood and most of the alizarin-based pigments. In addition, we were able to correct erroneous indications provided by Winsor & Newton on the composition of some tints, as in the case of violet carmine, and study how the formulation of certain pigments has been modified over the centuries.