Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco M. Domingues is active.

Publication


Featured researches published by Marco M. Domingues.


Journal of Peptide Science | 2008

What can light scattering spectroscopy do for membrane‐active peptide studies?

Marco M. Domingues; Patrícia S. Santiago; Miguel A. R. B. Castanho; Nuno C. Santos

Highly charged peptides are important components of the immune system and belong to an important family of antibiotics. Although their therapeutic activity is known, most of the molecular level mechanisms are controversial. A wide variety of different approaches are usually applied to understand their mechanisms, but light scattering techniques are frequently overlooked. Yet, light scattering is a noninvasive technique that allows insights both on the peptide mechanism of action as well as on the development of new antibiotics. Dynamic light scattering (DLS) and static light scattering (SLS) are used to measure the aggregation process of lipid vesicles upon addition of peptides and molecular properties (shape, molecular weight). The high charge of these peptides allows electrostatic attraction toward charged lipid vesicles, which is studied by zeta potential (ζ‐potential) measurements. Copyright


PLOS ONE | 2009

rBPI21 Promotes Lipopolysaccharide Aggregation and Exerts Its Antimicrobial Effects by (Hemi)fusion of PG-Containing Membranes

Marco M. Domingues; Miguel A. R. B. Castanho; Nuno C. Santos

Antimicrobial peptides (AMPs) are important potential alternatives to conventional therapies against bacterial infections. rBPI21 is a 21 kDa peptide based on the N-terminal region of the neutrophil bactericidal/permeability-increasing protein (BPI). This AMP possesses highly selective bactericidal effects on Gram-negative bacteria and have affinity for lipopolysaccharide (LPS) which is believed to be at the origin of its neutralizing effect of the LPS segregated into the bloodstream. We aim at understanding the molecular bases of rBPI21 bactericidal and LPS neutralization actions, using biomembrane model systems. Using dynamic light scattering spectroscopy we demonstrate that rBPI21 promotes aggregation of negatively charged large unilamellar vesicles (LUV), even in the absence of LPS, and LPS aggregates, while for zwitterionic phosphatidylcholine (POPC) LUV the size remains unchanged. The peptide also promotes the fusion (or hemifusion) of membranes containing phosphatidylglycerol (POPG). The aggregation and fusion of negatively charged LUV are peptide concentration-dependent until massive aggregation is reached, followed by sample flocculation/precipitation. Concomitantly, there is a progressive change in the zeta-potential of the LUV systems and LPS aggregates. LUV systems composed of phosphatidylglycerol (POPG) and lipid mixtures with POPG have higher zeta-potential variations than in the absence of POPG. The interaction of rBPI21 with lipid vesicles is followed by leakage, with higher effect in POPG-containing membranes. LPS aggregation can be related with a decreased toxicity, possibly by facilitating its clearance by macrophage phagocytosis and/or blocking of LPS specific receptor recognition. Our data indicate that rBPI21 mechanism of action at the molecular level involves the interaction with the LPS of the outer membrane of Gram-negative bacteria, followed by internalization and leakage induction through the (hemi)fusion of the bacterial outer and inner membranes, both enriched in phosphatidylglycerol.


Langmuir | 2010

Isoelectric Point Determination for Glossoscolex paulistus Extracellular Hemoglobin: Oligomeric Stability in Acidic pH and Relevance to Protein−Surfactant Interactions

Patrícia S. Santiago; Francisco Adriano O. Carvalho; Marco M. Domingues; José Wilson P. Carvalho; N. C. Santos; Marcel Tabak

The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 MDa. It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole pH range. Our zeta-potential data are consistent with light scattering results. Average values of pI obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at pH 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5.0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria

Marco M. Domingues; Patrícia M. Silva; Henri G. Franquelim; Filomena A. Carvalho; Miguel A. R. B. Castanho; Nuno C. Santos

UNLABELLED New classes of antibiotics, such as antimicrobial peptides or proteins (AMPs), are crucial to deal with threatening bacterial diseases. rBPI21 is an AMP based on the human neutrophil BPI protein, with potential clinical use against meningitis. We studied the membrane perturbations promoted by rBPI21 on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Its interaction with bacteria was also studied in the presence of lipopolysaccharide (LPS), rBPI21 major ligand. Flow cytometry analysis of both bacteria shows that rBPI21 induces membrane depolarization. rBPI21 increases the negative surface charge of both bacteria toward positive values, as shown by zeta-potential measurements. This is followed by surface perturbations, culminating in cell lysis, as visualized by atomic force microscopy (AFM). Force spectroscopy measurements show that soluble LPS decreases the interaction of rBPI21 with bacteria, especially with S. aureus. This suggests that the rBPI21 LPS-binding pocket may also participate on the binding to Gram-positive bacteria. FROM THE CLINICAL EDITOR In this study, rBPI21, an antimicrobial protein based on the human neutrophil BPI protein, with potential clinical use against meningitis, is analyzed with multiple tools including zeta-potential measurements, clarifying its actions on E. coli and S. aureus. Since antimicrobial peptides are potentially important new additions to antibiotic regimens, studies like this represent important cornerstones in efficiency and mechanism of action testing of these new approaches.


Biophysical Chemistry | 2010

Thermal stability of extracellular hemoglobin of Glossoscolex paulistus: determination of activation parameters by optical spectroscopic and differential scanning calorimetric studies.

Patrícia S. Santiago; José Wilson P. Carvalho; Marco M. Domingues; Nuno C. Santos; Marcel Tabak

Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS), optical absorption spectroscopy (UV-VIS) and differential scanning calorimetry (DSC). At pH 7.0, cyanomet-HbGp is very stable, no oligomeric dissociation is observed, while denaturation occurs at 56°C, 4°C higher as compared to oxy-HbGp. The oligomeric dissociation of HbGp occurs simultaneously with some protein aggregation. Kinetic studies for oxy-HbGp using UV-VIS and DLS allowed to obtain activation energy (E(a)) values of 278-262 kJ/mol (DLS) and 333 kJ/mol (UV-VIS). Complimentary DSC studies indicate that the denaturation is irreversible, giving endotherms strongly dependent upon the heating scan rates, suggesting a kinetically controlled process. Dependence on protein concentration suggests that the two components in the endotherms are due to oligomeric dissociation effect upon denaturation. Activation energies are in the range 200-560 kJ/mol. The mid-point transition temperatures were in the range 50-65 °C. Cyanomet-HbGp shows higher mid-point temperatures as well as activation energies, consistent with its higher stability. DSC data are reported for the first time for an extracellular hemoglobin.


Molecular Pharmaceutics | 2011

Chemical Conjugation of the Neuropeptide Kyotorphin and Ibuprofen Enhances Brain Targeting and Analgesia

Marta M. B. Ribeiro; Antónia R. T. Pinto; Marco M. Domingues; Isa Serrano; Montserrat Heras; Eduard Bardají; Isaura Tavares; Miguel A. R. B. Castanho

The pharmaceutical potential of natural analgesic peptides is mainly hampered by their inability to cross the blood-brain barrier, BBB. Increasing peptide-cell membrane affinity through drug design is a promising strategy to overcome this limitation. To address this challenge, we grafted ibuprofen (IBP), a nonsteroidal anti-inflammatory drug, to kyotorphin (l-Tyr-l-Arg, KTP), an analgesic neuropeptide unable to cross BBB. Two new KTP derivatives, IBP-KTP (IbKTP-OH) and IBP-KTP-amide (IbKTP-NH(2)), were synthesized and characterized for membrane interaction, analgesic activity and mechanism of action. Ibuprofen enhanced peptide-membrane interaction, endowing a specificity for anionic fluid bilayers. A direct correlation between anionic lipid affinity and analgesic effect was established, IbKTP-NH(2) being the most potent analgesic (from 25 μmol · kg(-1)). In vitro, IbKTP-NH(2) caused the biggest shift in the membrane surface charge of BBB endothelial cells, as quantified using zeta-potential dynamic light scattering. Our results suggest that IbKTP-NH(2) crosses the BBB and acts by activating both opioid dependent and independent pathways.


Biophysical Journal | 2009

Fold-Unfold Transitions in the Selectivity and Mechanism of Action of the N-Terminal Fragment of the Bactericidal/Permeability-Increasing Protein (rBPI21)

Marco M. Domingues; Sílvia C. Lopes; Nuno C. Santos; Alexandre Quintas; Miguel A. R. B. Castanho

Septic or endotoxic shock is a common cause of death in hospital intensive care units. In the last decade numerous antimicrobial peptides and proteins have been tested in the search for an efficient drug to treat this lethal disease. Now in phase III clinical trials, rBPI(21), a recombinant N-terminal fragment of the bactericidal/permeability-increasing protein (BPI), is a promising drug to reduce lesions caused by meningococcal sepsis. We correlated structural and stability data with functional information of rBPI(21) bound to both model systems of eukaryotic and bacterial membranes. On interaction with membranes, rBPI(21) loses its conformational stability, as studied by circular dichroism. This interaction of rBPI(21) at membrane level was higher in the presence of negatively charged phospholipid relatively to neutral ones, with higher partition coefficients (K(p)), suggesting a preference for bacterial membranes over mammalian membranes. rBPI(21) binding to membranes is reinforced when its disulfide bond is broken due to conformational changes of the protein. This interaction is followed by liposome aggregation due to unfolding, which ensures protein aggregation, and interfacial localization of rBPI(21) in membranes, as studied by extensive quenching by acrylamide and 5-deoxylstearic acid and not by 16-deoxylstearic acid. An uncommon model of the selectivity and mechanism of action is proposed, where membrane induces unfolding of the antimicrobial protein, rBPI(21). The unfolding ensures protein aggregation, established by protein-protein interaction at membrane surface or between adjacent membranes covered by the unfolded protein. This protein aggregation step may lead to membrane perturbation.


Current Protein & Peptide Science | 2012

Antimicrobial peptide rBPI21: a translational overview from bench to clinical studies

Marco M. Domingues; N. C. Santos; Miguel A. R. B. Castanho

Gram-negative bacteria infection is sometimes followed by septic shock. This serious health condition is caused by the segregation of the lipopolysaccharide (LPS) from bacterial membrane into the bloodstream. Due to bacterial resistance, new antibiotics are needed. Most of the active antibiotics possess bactericidal effect, but lack LPS neutralization properties to prevent or neutralize septic shock. Antimicrobial peptides are a new class of antibiotics not prone to bacterial resistance, because their main target is the membrane. It is difficult for bacteria to critically change their membrane composition without affecting its molecular processes. rBPI21 is a recombinant antimicrobial peptide developed from an antimicrobial protein produced in neutrophils, the bactericidal/permeability-increasing protein (BPI) that ended phase III clinical trials against meningitis with success, reducing serious complications, such as amputations. It interacts preferentially with LPS with high affinity and at the same time has bactericidal effect. Here, we gather evidence that the interaction of the rBPI21 with LPS is mainly electrostatic, first, followed by massive LPS aggregation, which is correlated with its clearance from the bloodstream. The molecular mechanism at membrane level includes the peptide interactions with negatively charged phospholipids that promote outer and inner membrane hemi(fusion). This perturbation is followed by membrane permeabilization.


ACS Chemical Biology | 2015

Understanding dengue virus capsid protein disordered N-Terminus and pep14-23-based inhibition.

André F. Faustino; Gabriela M. Guerra; Roland G. Huber; Axel Hollmann; Marco M. Domingues; Galuce M. Barbosa; Francisco J. Enguita; Peter J. Bond; Miguel A. R. B. Castanho; Andrea T. Da Poian; Fabio C. L. Almeida; Nuno C. Santos; Ivo C. Martins

Dengue virus (DENV) infection affects millions of people and is becoming a major global disease for which there is no specific available treatment. pep14-23 is a recently designed peptide, based on a conserved segment of DENV capsid (C) protein. It inhibits the interaction of DENV C with host intracellular lipid droplets (LDs), which is crucial for viral replication. Combining bioinformatics and biophysics, here, we analyzed pep14-23 structure and ability to bind different phospholipids, relating that information with the full-length DENV C. We show that pep14-23 acquires α-helical conformation upon binding to negatively charged phospholipid membranes, displaying an asymmetric charge distribution structural arrangement. Structure prediction for the N-terminal segment reveals four viable homodimer orientations that alternatively shield or expose the DENV C hydrophobic pocket. Taken together, these findings suggest a new biological role for the disordered N-terminal region, which may function as an autoinhibitory domain mediating DENV C interaction with its biological targets. The results fit with our current understanding of DENV C and pep14-23 structure and function, paving the way for similar approaches to understanding disordered proteins and improved peptidomimetics drug development strategies against DENV and similar Flavivirus infections.


Biochimica et Biophysica Acta | 2013

rBPI21 interacts with negative membranes endothermically promoting the formation of rigid multilamellar structures.

Marco M. Domingues; M. Lucia Bianconi; Leandro R.S. Barbosa; Patrícia S. Santiago; Marcel Tabak; Miguel A. R. B. Castanho; Rosangela Itri; Nuno C. Santos

rBPI21 belongs to the antimicrobial peptide and protein (AMP) family. It has high affinity for lipopolysaccharide (LPS), acting mainly against Gram-negative bacteria. This work intends to elucidate the mechanism of action of rBPI21 at the membrane level. Using isothermal titration calorimetry, we observed that rBPI21 interaction occurs only with negatively charged membranes (mimicking bacterial membranes) and is entropically driven. Differential scanning calorimetry shows that membrane interaction with rBPI21 is followed by an increase of rigidity on negatively charged membrane, which is corroborated by small angle X-ray scattering (SAXS). Additionally, SAXS data reveal that rBPI21 promotes the multilamellarization of negatively charged membranes. The results support the proposed model for rBPI21 action: first it may interact with LPS at the bacterial surface. This entropic interaction could cause the release of ions that maintain the packed structure of LPS, ensuring peptide penetration. Then, rBPI21 may interact with the negatively charged leaflets of the outer and inner membranes, promoting the interaction between the two bacterial membranes, ultimately leading to cell death.

Collaboration


Dive into the Marco M. Domingues's collaboration.

Top Co-Authors

Avatar

Nuno C. Santos

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Miguel A. R. B. Castanho

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel Tabak

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Salomé Veiga

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

João Miguel Freire

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Gaspar

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Filomena A. Carvalho

Instituto de Medicina Molecular

View shared research outputs
Researchain Logo
Decentralizing Knowledge