Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Maccarana is active.

Publication


Featured researches published by Marco Maccarana.


Journal of Biological Chemistry | 1993

Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor

Marco Maccarana; B Casu; Ulf Lindahl

Abstract Experiments based on interaction in free solution between basic fibroblast growth factor (FGF-2) and saccharides related to heparin/heparan sulfate showed that the growth factor binds to heparin and to selectively glucosaminyl 6-O-desulfated heparin but poorly to iduronosyl 2-O-desulfated heparin. 2-O-sulfate groups thus are essential to the interaction, whereas 6-O-sulfates are not required nor do they interfere with FGF-2 binding. Comparison of various bound/nonbound oligosaccharides implicated a minimal pentasaccharide sequence for FGF-2 binding, with the structure: -hexuronic acid-glucosamine N-sulfate-hexuronic acid-glucosamine N-sulfate-iduronic acid 2-O-sulfate- (reducing terminus to the right). Such (overlapping) sequences are abundant in heparin, albeit heavily obscured by irrelevant O-sulfate groups, and occur also in heparan sulfate, with or without additional O-sulfates.


Journal of Biological Chemistry | 1996

DOMAIN STRUCTURE OF HEPARAN SULFATES FROM BOVINE ORGANS

Marco Maccarana; Yoshiyuki Sakura; Akira Tawada; Keiichi Yoshida; Ulf Lindahl

Samples of heparan sulfate, isolated from bovine aorta, lung, intestine, and kidney, were degraded by digestion with a mixture of heparitinases or by treatment with nitrous acid, with or without previous N-deacetylation. Analysis of the resulting oligosaccharides showed that the various heparan sulfate samples all contained regions of up to 8 or 9 consecutive N-acetylated glucosamine residues, as well as contiguous N-sulfated sequences. L-Iduronic acid accounted for a remarkably constant proportion, 50-60%, of the total hexuronic acid units within the latter structures. Of the total iduronic acid units, 36-55% were located outside the contiguous N-sulfated regions, presumably in sequences composed of alternating N-acetylated and N-sulfated disaccharide residues. While most of the iduronic acid units within the N-sulfated blocks were 2-O-sulfated, those located outside were almost exclusively nonsulfated. The heparan sulfate preparations differed markedly with regard to the content of 6-O-sulfated glucosamine units, more than half of which were located outside the N-sulfated block regions. These findings suggest that the formation of iduronic acid residues and their subsequent 2-O-sulfation are coupled within but not outside the contiguous N-sulfated regions of the heparan sulfate chains and, furthermore, that the 2-O- and 6-O-sulfotransferase reactions are differentially regulated during heparan sulfate biosynthesis.


Journal of Biological Chemistry | 2006

Biosynthesis of Dermatan Sulfate CHONDROITIN-GLUCURONATE C5-EPIMERASE IS IDENTICAL TO SART2

Marco Maccarana; Benny Olander; Johan Malmström; Kerstin Tiedemann; Ruedi Aebersold; Ulf Lindahl; Jin-Ping Li; Anders Malmström

We identified the gene encoding chondroitin-glucuronate C5-epimerase (EC 5.1.3.19) that converts d-glucuronic acid to l-iduronic acid residues in dermatan sulfate biosynthesis. The enzyme was solubilized from bovine spleen, and an ∼43,000-fold purified preparation containing a major 89-kDa candidate component was subjected to mass spectrometry analysis of tryptic peptides. SART2 (squamous cell carcinoma antigen recognized by T cell 2), a protein with unknown function highly expressed in cancer cells and tissues, was identified by 18 peptides covering 26% of the sequence. Transient expression of cDNA resulted in a 22-fold increase in epimerase activity in 293HEK cell lysate. Moreover, overexpressing cells produced dermatan sulfate chains with 20% of iduronic acid-containing disaccharide units, as compared with 5% for mock-transfected cells. The iduronic acid residues were preferentially clustered in blocks, as in naturally occurring dermatan sulfate. Given the discovered identity, we propose to rename SART2 (Nakao, M., Shichijo, S., Imaizumi, T., Inoue, Y., Matsunaga, K., Yamada, A., Kikuchi, M., Tsuda, N., Ohta, K., Takamori, S., Yamana, H., Fujita, H., and Itoh, K. (2000) J. Immunol. 164, 2565–2574) with a functional designation, chondroitin-glucuronate C5-epimerase (or DS epimerase). DS epimerase activity is ubiquitously present in normal tissues, although with marked quantitative differences. It is highly homologous to part of the NCAG1 protein, encoded by the C18orf4 gene, genetically linked to bipolar disorder. NCAG1 also contains a putative chondroitin sulfate sulfotransferase domain and thus may be involved in dermatan sulfate biosynthesis. The functional relation between dermatan sulfate and cancer is unknown but may involve known iduronic acid-dependent interactions with growth factors, selectins, cytokines, or coagulation inhibitors.


Molecular and Cellular Biology | 2009

Dermatan Sulfate Epimerase 1-Deficient Mice have Reduced Content and Changed Distribution of Iduronic acids in Dermatan Sulfate and an Altered Collagen Structure in Skin.

Marco Maccarana; Sebastian Kalamajski; M. Kongsgaard; S. Peter Magnusson; Åke Oldberg; Anders Malmström

ABSTRACT Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile strength of DS-epi1-null skin.


FEBS Journal | 2013

Biological Functions of Iduronic Acid in Chondroitin/Dermatan Sulfate.

Martin A. Thelin; Barbara Bartolini; Jakob B Axelsson; Renata Gustafsson; Emil Tykesson; Edgar M. Pera; Åke Oldberg; Marco Maccarana; Anders Malmström

The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler–Danlos syndrome: adducted thumb‐clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease.


Journal of Histochemistry and Cytochemistry | 2012

Iduronic acid in chondroitin/dermatan sulfate: biosynthesis and biological function.

Anders Malmström; Barbara Bartolini; Martin A. Thelin; Benny Pacheco; Marco Maccarana

The ability of chondroitin/dermatan sulfate (CS/DS) to convey biological information is enriched by the presence of iduronic acid. DS-epimerases 1 and 2 (DS-epi1 and 2), in conjunction with DS-4-O-sulfotransferase 1, are the enzymes responsible for iduronic acid biosynthesis and will be the major focus of this review. CS/DS proteoglycans (CS/DS-PGs) are ubiquitously found in connective tissues, basement membranes, and cell surfaces or are stored intracellularly. Such wide distribution reflects the variety of biological roles in which they are involved, from extracellular matrix organization to regulation of processes such as proliferation, migration, adhesion, and differentiation. They play roles in inflammation, angiogenesis, coagulation, immunity, and wound healing. Such versatility is achieved thanks to their variable composition, both in terms of protein core and the fine structure of the CS/DS chains. Excellent reviews have been published on the collective and individual functions of each CS/DS-PG. This short review presents the biosynthesis and functions of iduronic acid-containing structures, also as revealed by the analysis of the DS-epi1- and 2-deficient mouse models.


Journal of Biological Chemistry | 2009

Two dermatan sulfate epimerases form iduronic acid domains in dermatan sulfate.

Benny Pacheco; Anders Malmström; Marco Maccarana

A second dermatan sulfate epimerase (DS-epi2) was identified as a homolog of the first epimerase (DS-epi1), which was previously described by our group. DS-epi2 is 1,222 amino acids long and has an ∼700-amino acid N-terminal epimerase domain that is highly conserved between the two enzymes. In addition, the C-terminal portion is predicted to be an O-sulfotransferase domain. In this study we found that DS-epi2 has epimerase activity, which involves conversion of d-glucuronic acid to l-iduronic acid (EC 5.1.3.19), but no O-sulfotransferase activity was detected. In dermatan sulfate, iduronic acid residues are either clustered together in blocks or alternating with glucuronic acid, forming hybrid structures. By using a short interfering RNA approach, we found that DS-epi2 and DS-epi1 are both involved in the biosynthesis of the iduronic acid blocks in fibroblasts and that DS-epi2 can also synthesize the hybrid structures. Both iduronic acid-containing domains have been shown to bind to several growth factors, many of which have biological roles in brain development. DS-epi2 has been genetically linked to bipolar disorder, which suggests that the dermatan sulfate domains generated by a defective enzyme may be involved in the etiology of the disease.


Journal of Biological Chemistry | 2009

Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling.

Juan Jia; Marco Maccarana; Xiao Zhang; Maxim M. Bespalov; Ulf Lindahl; Jin-Ping Li

HSEPI (glucuronyl C5-epimerase) catalyzes the conversion of d-glucuronic acid to l-iduronic acid in heparan sulfate (HS) biosynthesis. Disruption of the Hsepi gene in mice yielded a lethal phenotype with selective organ defects but had remarkably little effect on other organ systems. We have approached the underlying mechanisms by examining the course and effects of FGF2 signaling in a mouse embryonic fibroblast (MEF) cell line derived from the Hsepi−/− mouse. The HS produced by these cells is devoid of l-iduronic acid residues but shows up-regulated N- and 6-O-sulfation compared with wild type (WT) MEF HS. In medium fortified with 10% fetal calf serum, the Hsepi−/− MEFs proliferated and migrated similarly to WT cells. Under starvation conditions, both cell types showed attenuated proliferation and migration that could be restored by the addition of FGF2 to WT cells, whereas Hsepi−/− cells were resistant. Moreover, ERK phosphorylation following FGF2 stimulation was delayed in Hsepi−/− compared with WT cells. Assessment of HS-growth factor interaction by nitrocellulose filter trapping revealed a strikingly aberrant binding property of FGF2 and glia-derived neurotropic factor to Hsepi−/− but not to WT HS. glia-derived neurotropic factor has a key role in kidney development, defective in Hsepi−/− mice. By contrast, Hsepi−/− and WT HS interacted similarly and in conventional mode with FGF10. These findings correlate defective function of growth factors with their mode of HS interaction and may help explain the partly modest organ phenotypes observed after genetic ablation of selected enzymes in HS biosynthesis.


Glycobiology | 2009

Dermatan 4-O-sulfotransferase 1 is pivotal in the formation of iduronic acid blocks in dermatan sulfate

Benny Pacheco; Marco Maccarana; Anders Malmström

Chondroitin/dermatan sulfate is a highly complex linear polysaccharide ubiquitously found in the extracellular matrix and at the cell surface. Several of its functions, such as binding to growth factors, are mediated by domains composed of alternating iduronic acid and 4-O-sulfated N-acetylgalactosamine residues, named 4-O-sulfated iduronic acid blocks. These domains are generated by the action of two DS-epimerases, which convert D-glucuronic acid into its epimer L-iduronic acid, in close connection with 4-O-sulfation. In this study, dermatan sulfate structure was evaluated after downregulating or increasing dermatan 4-O-sulfotransferase 1 (D4ST-1) expression. siRNA-mediated downregulation of D4ST-1 in primary human lung fibroblasts led to a drastic specific reduction of iduronic acid blocks. No change of epimerase activity was found, indicating that the influence of D4ST-1 on epimerization is not due to an altered expression level of the DS-epimerases. Analysis of the dermatan sulfate chains showed that D4ST-1 is essential for the biosynthesis of the disulfated structure iduronic acid-2-O-sulfate-N-acetylgalactosamine-4-O-sulfate, thus confirmed to be strictly connected with the iduronic acid blocks. Also the biologically important residue hexuronic acid-N-acetylgalactosamine-4,6-O-disulfate considerably decreased after D4ST-1 downregulation. In conclusion, D4ST-1 is a key enzyme and is indispensable in the formation of important functional domains in dermatan sulfate and cannot be compensated by other 4-O-sulfotransferases.


Cancer Research | 2012

Dermatan Sulfate Is Involved in the Tumorigenic Properties of Esophagus Squamous Cell Carcinoma

Martin A. Thelin; Katrin J. Svensson; Xiaofeng Shi; Mariam Bagher; Jakob B Axelsson; Anna Isinger-Ekstrand; Toin H. van Kuppevelt; Jan Johansson; Mef Nilbert; Joseph Zaia; Mattias Belting; Marco Maccarana; Anders Malmström

Extracellular matrix, either produced by cancer cells or by cancer-associated fibroblasts, influences angiogenesis, invasion, and metastasis. Chondroitin/dermatan sulfate (CS/DS) proteoglycans, which occur both in the matrix and at the cell surface, play important roles in these processes. The unique feature that distinguishes DS from CS is the presence of iduronic acid (IdoA) in DS. Here, we report that CS/DS is increased five-fold in human biopsies of esophagus squamous cell carcinoma (ESCC), an aggressive tumor with poor prognosis, as compared with normal tissue. The main IdoA-producing enzyme, DS epimerase 1 (DS-epi1), together with the 6-O- and 4-O-sulfotransferases, were highly upregulated in ESCC biopsies. Importantly, CS/DS structure in patient tumors was significantly altered compared with normal tissue, as determined by sensitive mass spectrometry. To further understand the roles of IdoA in tumor development, DS-epi1 expression, and consequently IdoA content, was downregulated in ESCC cells. IdoA-deficient cells exhibited decreased migration and invasion capabilities in vitro, which was associated with reduced cellular binding of hepatocyte growth factor, inhibition of pERK-1/2 signaling, and deregulated actin cytoskeleton dynamics and focal adhesion formation. Our findings show that IdoA in DS influences tumorigenesis by affecting cancer cell behavior. Therefore, downregulation of IdoA by DS-epi1 inhibitors may represent a new anticancer therapy.

Collaboration


Dive into the Marco Maccarana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge