Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Maffione is active.

Publication


Featured researches published by Marco Maffione.


Geology | 2015

Forearc hyperextension dismembered the south Tibetan ophiolites

Marco Maffione; Douwe J. J. van Hinsbergen; Louise M.T. Koornneef; Carl Guilmette; Kip V. Hodges; Nathaniel L. Borneman; Wentao Huang; Lin Ding; Paul Kapp

Suprasubduction zone ophiolites are relics of oceanic upper plate forearcs and are typically preserved as discontinuous belts with discrete massifs along suture zones. Ophiolites usually contain an incomplete condensed section compared to average modern oceanic lithosphere. The incompleteness and discontinuity of ophiolites are frequently attributed to dismemberment, but tectonic causes remain poorly constrained. Here we show new paleomagnetic and field geological evidence for the preservation of extensional detachment faults that thinned and dismembered the south Tibetan ophiolite belt during the Early Cretaceous. Similar to those documented in modern slow- and ultraslow-spreading ridges, these detachments exhumed lithospheric mantle, and subophiolitic melange, to the seafloor, which became unconformably covered by Asia-derived forearc strata. We call this mechanism forearc hyperextension, whereby widespread detachment faults accommodate upper plate extension above a subduction zone. We propose that hyperextension is the key mechanism responsible for dismemberment of the south Tibetan ophiolitic belt shortly after its magmatic accretion.


Geochemistry Geophysics Geosystems | 2014

Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes

Marco Maffione; Antony Morris; Oliver Plümper; Douwe J. J. van Hinsbergen

Serpentinization of ultramafic rocks during hydrothermal alteration at mid-ocean ridges profoundly changes the physical, chemical, rheological, and magnetic properties of the oceanic lithosphere. There is renewed interest in this process following the discovery of widespread exposures of serpentinized mantle on the seafloor in slow spreading oceans. Unroofing of mantle rocks in these settings is achieved by displacement along oceanic detachment faults, which eventually results in structures known as oceanic core complexes (OCCs). However, we have limited understanding of the mechanisms of serpentinization at the seafloor and in particular their relationship with the evolution of OCCs. Since magnetite is a direct product of serpentinization, the magnetic properties of variably serpentinized peridotites can provide unique insights into these mechanisms and their evolution in the oceanic lithosphere. Here we present new results from an integrated, rock magnetic, paleomagnetic, and petrological study of variably serpentinized peridotites from the first fossil OCC recognized in an ophiolite. Integration with existing data from mid-ocean ridge-related abyssal peridotites recovered from several scientific ocean drilling sites yields the first magnetic database from peridotites extending across the complete range (0–100%) of degrees of serpentinization. Variations in a range of magnetic parameters with serpentinization, and associated paleomagnetic data, provide: (i) key constraints on the mechanism(s) of serpentinization at mid-ocean ridges; (ii) insights on the potential for serpentinized peridotites to contribute to marine magnetic anomalies; and (iii) evidence that leads to a new conceptual model for the evolution of serpentinization and related remanence acquisition at OCCs.


Tectonics | 2016

Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey

Douwe J. J. van Hinsbergen; Marco Maffione; Alexis Plunder; Nuretdin Kaymakci; Morgan Ganerød; Bart Willem Hendrik Hendriks; Fernando Corfu; Derya Gürer; Giovanni I. N. O. de Gelder; Kalijn Peters; Peter J. McPhee; Fraukje M. Brouwer; Eldert L. Advokaat; R.L.M. Vissers

In Central and Western Anatolia two continent-derived massifs simultaneously underthrusted an oceanic lithosphere in the Cretaceous and ended up with very contrasting metamorphic grades: high pressure, low temperature in the Tavsanli zone and the low pressure, high temperature in the Kirsehir Block. To assess why, we reconstruct the Cretaceous paleogeography and plate configuration of Central Anatolia using structural, metamorphic, and geochronological constraints and Africa-Europe plate reconstructions. We review and provide new 40Ar/39Ar and U/Pb ages from Central Anatolian metamorphic and magmatic rocks and ophiolites and show new paleomagnetic data on the paleo-ridge orientation in a Central Anatolian Ophiolite. Intraoceanic subduction that formed within the Neotethys around 100–90 Ma along connected N-S and E-W striking segments was followed by overriding oceanic plate extension. Already during suprasubduction zone ocean spreading, continental subduction started. We show that the complex geology of central and southern Turkey can at first order be explained by a foreland-propagating thrusting of upper crustal nappes derived from a downgoing, dominantly continental lithosphere: the Kirsehir Block and Tavsanli zone accreted around 85 Ma, the Afyon zone around 65 Ma, and Taurides accretion continued until after the middle Eocene. We find no argument for Late Cretaceous subduction initiation within a conceptual “Inner Tauride Ocean” between the Kirsehir Block and the Afyon zone as widely inferred. We propose that the major contrast in metamorphic grade between the Kirsehir Block and the Tavsanli zone primarily results from a major contrast in subduction obliquity and the associated burial rates, higher temperature being reached upon higher subduction obliquity.


Geochemistry Geophysics Geosystems | 2015

Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra‐subduction zone ophiolites

Marco Maffione; Cedric Thieulot; Douwe J. J. van Hinsbergen; Antony Morris; Oliver Plümper; Wim Spakman

Subduction initiation is a critical link in the plate tectonic cycle. Intraoceanic subduction zones can form along transform faults and fracture zones, but how subduction nucleates parallel to mid-ocean ridges, as in e.g., the Neotethys Ocean during the Jurassic, remains a matter of debate. In recent years, extensional detachment faults have been widely documented adjacent to slow-spreading and ultraslow-spreading ridges where they cut across the oceanic lithosphere. These structures are extremely weak due to widespread occurrence of serpentine and talc resulting from hydrothermal alteration, and can therefore effectively localize deformation. Here, we show geochemical, tectonic, and paleomagnetic evidence from the Jurassic ophiolites of Albania and Greece for a subduction zone formed in the western Neotethys parallel to a spreading ridge along an oceanic detachment fault. With 2-D numerical modeling exploring the evolution of a detachment-ridge system experiencing compression, we show that serpentinized detachments are always weaker than spreading ridges. We conclude that, owing to their extreme weakness, oceanic detachments can effectively localize deformation under perpendicular far-field forcing, providing ideal conditions to nucleate new subduction zones parallel and close to (or at) spreading ridges. Direct implication of this, is that resumed magmatic activity in the forearc during subduction initiation can yield widespread accretion of suprasubduction zone ophiolites at or close to the paleoridge. Our new model casts the enigmatic origin of regionally extensive ophiolite belts in a novel geodynamic context, and calls for future research on three-dimensional modeling of subduction initiation and how upper plate extension is associated with that.


Geochemistry Geophysics Geosystems | 2015

Dynamics of intraoceanic subduction initiation : 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions

Douwe J. J. van Hinsbergen; Kalijn Peters; Marco Maffione; Wim Spakman; Carl Guilmette; Cedric Thieulot; Oliver Plümper; Derya Gürer; Fraukje M. Brouwer; E. Aldanmaz; Nuretdin Kaymakci

Analyzing subduction initiation is key for understanding the coupling between plate tectonics and the underlying mantle. Here we focus on suprasubduction zone (SSZ) ophiolites and how their formation links to intraoceanic subduction initiation in an absolute plate motion frame. SSZ ophiolites form the majority of exposed oceanic lithosphere fragments and are widely recognized to have formed during intraoceanic subduction initiation. Structural, petrological, geochemical, and plate kinematic constraints on their kinematic evolution show that SSZ crust forms at fore-arc spreading centers at the expense of a mantle wedge, thereby flattening the nascent slab. This leads to the typical inverted pressure gradients found in metamorphic soles that form at the subduction plate contact below and during SSZ crust crystallization. Former spreading centers are preserved in forearcs when subduction initiates along transform faults or off-ridge oceanic detachments. We show how these are reactivated when subduction initiates in the absolute plate motion direction of the inverting weakness zone. Upon inception of slab pull due to, e.g., eclogitization, the sole is separated from the slab, remains welded to the thinned overriding plate lithosphere, and can become intruded by mafic dikes upon asthenospheric influx into the mantle wedge. We propound that most ophiolites thus formed under special geodynamic circumstances and may not be representative of normal oceanic crust. Our study highlights how far-field geodynamic processes and absolute plate motions may force intraoceanic subduction initiation as key toward advancing our understanding of the entire plate tectonic cycle.


Scientific Reports | 2013

Recognizing detachment-mode seafloor spreading in the deep geological past.

Marco Maffione; Antony Morris; Mark W. Anderson

Large-offset oceanic detachment faults are a characteristic of slow- and ultraslow-spreading ridges, leading to the formation of oceanic core complexes (OCCs) that expose upper mantle and lower crustal rocks on the seafloor. The lithospheric extension accommodated by these structures is now recognized as a fundamentally distinct “detachment-mode” of seafloor spreading compared to classical magmatic accretion. Here we demonstrate a paleomagnetic methodology that allows unequivocal recognition of detachment-mode seafloor spreading in ancient ophiolites and apply this to a potential Jurassic detachment fault system in the Mirdita ophiolite (Albania). We show that footwall and hanging wall blocks either side of an inferred detachment have significantly different magnetizations that can only be explained by relative rotation during seafloor spreading. The style of rotation is shown to be identical to rolling hinge footwall rotation documented recently in OCCs in the Atlantic, confirming that detachment-mode spreading operated at least as far back as the Jurassic.


Journal of Geophysical Research | 2017

Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

Marco Maffione; Douwe J. J. van Hinsbergen; Giovanni I. N. O. de Gelder; Freek C. van der Goes; Antony Morris

Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distributed in the eastern Mediterranean region along three ~E-W trending ophiolitic belts. Several models have been proposed to explain the formation of these ophiolites and the evolution of the associated intra-Neo-Tethyan subduction zone. Here we present new paleospreading directions from six Upper Cretaceous ophiolites of Turkey, Cyprus, and Syria, calculated by using new and published paleomagnetic data from sheeted dyke complexes. Our results show that ~NNE-SSW subduction zones were formed within the Neo-Tethys during the Late Cretaceous, which we propose were part of a major step-shaped subduction system composed of ~NNE-SSW and ~WNW-ESE segments. We infer that this subduction system developed within old (Triassic?) lithosphere, along fracture zones and perpendicular weakness zones, since the Neo-Tethyan spreading ridge formed during Gondwana fragmentation would have already been subducted at the Pontides subduction zone by the Late Cretaceous. Our new results provide an alternative kinematic model of Cretaceous Neo-Tethyan subduction initiation and call for future research on the mechanisms of subduction inception within old (and cold) lithosphere and the formation of metamorphic soles below suprasubduction zone ophiolites in the absence of nearby spreading ridges.


International Journal of Earth Sciences | 2012

Magnetic fabric of Pleistocene continental clays from the hanging-wall of an active low-angle normal fault (Altotiberina Fault, Italy)

Marco Maffione; Stefano Pucci; Leonardo Sagnotti; Fabio Speranza

Anisotropy of magnetic susceptibility (AMS) represents a valuable proxy able to detect subtle strain effects in very weakly deformed sediments. In compressive tectonic settings, the magnetic lineation is commonly parallel to fold axes, thrust faults, and local bedding strike, while in extensional regimes, it is perpendicular to normal faults and parallel to bedding dip directions. The Altotiberina Fault (ATF) in the northern Apennines (Italy) is a Plio-Quaternary NNW–SSE low-angle normal fault; the sedimentary basin (Tiber basin) at its hanging-wall is infilled with a syn-tectonic, sandy-clayey continental succession. We measured the AMS of apparently undeformed sandy clays sampled at 12 sites within the Tiber basin. The anisotropy parameters suggest that a primary sedimentary fabric has been overprinted by an incipient tectonic fabric. The magnetic lineation is well developed at all sites, and at the sites from the western sector of the basin it is oriented sub-perpendicular to the trend of the ATF, suggesting that it may be related to extensional strain. Conversely, the magnetic lineation of the sites from the eastern sector has a prevailing N–S direction. The occurrence of triaxial to prolate AMS ellipsoids and sub-horizontal magnetic lineations suggests that a maximum horizontal shortening along an E–W direction occurred at these sites. The presence of compressive AMS features at the hanging-wall of the ATF can be explained by the presence of gently N–S-trending local folds (hardly visible in the field) formed by either passive accommodation above an undulated fault plane, or rollover mechanism along antithetic faults. The long-lasting debate on the extensional versus compressive Plio-Quaternary tectonics of the Apennines orogenic belt should now be revised taking into account the importance of compressive structures related to local effects.


Geology | 2016

Is the Troodos ophiolite (Cyprus) a complete, transform fault–bounded Neotethyan ridge segment?

Antony Morris; Marco Maffione

We report new paleomagnetic data from the sheeted dike complex of the Troodos ophiolite (Cyprus) that indicate that its northern limit is marked by a hitherto unrecognized oceanic transform fault system. The style, magnitude, and scale of upper crustal fault-block rotations in the northwestern Troodos region mirror those observed adjacent to the well-known Southern Troodos transform fault zone along the southern edge of the ophiolite. A pattern of increasing clockwise rotation toward the north, coupled with consistent original dike strikes and inclined net rotation axes across this region, is compatible with distributed deformation adjacent to a dextrally slipping transform system with a principal displacement zone just to the north of the exposed ophiolite. Combined with existing constraints on the spreading fabric, this implies segmentation of the Troodos ridge system on length scales of ∼40 km, and suggests that a coherent strip of Neotethyan lithosphere, representing a complete ridge segment bounded by transforms, has been uplifted to form the currently exposed Troodos ophiolite. Moreover, the inferred length scale of the ridge segment is consistent with formation at a slow-spreading rate during Tethyan seafloor spreading and with a supra-subduction zone environment, as indicated by geochemical constraints.


Lithosphere | 2017

Vertical-axis rotations accommodated along the Mid-Cycladic lineament on Paros Island in the extensional heart of the Aegean orocline (Greece)

Christina Malandri; Konstantinos Soukis; Marco Maffione; Murat Özkaptan; Emmanuel Vassilakis; Stelios Lozios; Douwe J. J. van Hinsbergen

The Aegean–west Anatolian orocline formed due to Neogene opposite rotations of its western and eastern limbs during opening of the Aegean back-arc basin. Stretching lineations in exhumed metamorphic complexes in this basin mimic the regional vertical-axis rotation patterns and suggest that the oppositely rotating domains are sharply bounded along a Mid-Cycladic lineament, the tectonic nature of which is enigmatic. Some have proposed this lineament to be an extensional fault accommodating orogen-parallel extension, while others have considered it to be a transform fault. The island of Paros hosts the only exposure of the E- to NE-trending lineations characterizing the NW Cyclades and the N-trending lineations of the SE Cyclades. Here, we show new paleomagnetic results from isotropic, ca. 16 Ma granitoids that intruded both domains and demonstrate that the trend difference resulted from post–16 Ma ∼90° clockwise and 10° counterclockwise rotation of the NW and SE blocks, respectively. We interpret the semiductile to brittle, low-angle, SE-dipping Elitas shear zone that accommodated this rotation difference to reflect the Mid-Cycladic lineament. We conclude a two-stage exhumation history for Paros that is consistent with regional Aegean reconstructions. Between ca. 23 and 16 Ma, the metamorphic rocks of Paros were exhumed from amphibolite-facies to greenschist-facies conditions along a top-to-the-N detachment. The Elitas shear zone then started to exhume the northwestern, clockwise-rotating domain from below the southeastern, counterclockwise rotating domain since 16 Ma. From this, we infer that the Mid-Cycladic lineament is an extensional shear zone, consistent with geometric predictions that Aegean oroclinal bending was accommodated by orogen-normal and orogen-parallel extension.

Collaboration


Dive into the Marco Maffione's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antony Morris

Plymouth State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge