Marco Metzger
Translational Centre for Regenerative Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Metzger.
Gastroenterology | 2009
Marco Metzger; Petra M. Bareiss; Timm Danker; Silvia Wagner; Joerg Hennenlotter; Elke Guenther; Florian Obermayr; A. Stenzl; Alfred Koenigsrainer; Thomas Skutella; Lothar Just
BACKGROUND & AIMSnNeural stem and progenitor cells from the enteric nervous system have been proposed for use in cell-based therapies against specific neurogastrointestinal disorders. Recently, enteric neural progenitors were generated from human neonatal and early postnatal (until 5 years after birth) gastrointestinal tract tissues. We investigated the proliferation and differentiation of enteric nervous system progenitors isolated from human adult gastrointestinal tract.nnnMETHODSnHuman enteric spheroids were generated from adult small and large intestine tissues and then expanded and differentiated, depending on the applied cell culture conditions. For implantation studies, spheres were grafted into fetal slice cultures and embryonic aganglionic hindgut explants from mice. Differentiating enteric neural progenitors were characterized by 5-bromo-2-deoxyuridine labeling, in situ hybridization, immunocytochemistry, quantitative real-time polymerase chain reaction, and electrophysiological studies.nnnRESULTSnThe yield of human neurosphere-like bodies was increased by culture in conditional medium derived from fetal mouse enteric progenitors. We were able to generate proliferating enterospheres from adult human small or large intestine tissues; these enterospheres could be subcultured and maintained for several weeks in vitro. Spheroid-derived cells could be differentiated into a variety of neuronal subtypes and glial cells with characteristics of the enteric nervous system. Experiments involving implantation into organotypic intestinal cultures showed the differentiation capacity of neural progenitors in a 3-dimensional environment.nnnCONCLUSIONSnIt is feasible to isolate and expand enteric progenitor cells from human adult tissue. These findings offer new strategies for enteric stem cell research and future cell-based therapies.
Gastroenterology | 2009
Marco Metzger; Claire Caldwell; Amanda J. Barlow; Alan J. Burns; Nikhil Thapar
BACKGROUND & AIMSnEnteric nervous system stem cells (ENSSCs) provide potential therapeutic tools to replenish absent ganglia in Hirschsprungs disease. Although full-thickness human postnatal gut tissue can be used to generate ENSSCs, reliance on its harvesting from surgical resection poses significant practical limitations. This study aimed to explore whether gut tissue obtained utilizing minimally invasive routine endoscopy techniques could be used to generate ENSSCs and whether such cells retain the potential to generate an ENS upon transplantation into aganglionic gut.nnnMETHODSnPostnatal human gut mucosal tissue obtained from children undergoing gastrointestinal endoscopy was used to generate cell cultures in which ENSSCs were contained within neurosphere-like bodies (NLBs). These NLBs were characterized by immunostaining, and their potential to generate components of the ENS, in vitro and upon transplantation into models of aganglionic gut, was examined.nnnRESULTSnGut mucosal biopsy specimens were obtained from 75 children (age, 9 months-17 years). The biopsy specimens contained neural cells and ENSSCs and, on culturing, generated characteristic NLBs at all ages examined. Postnatal mucosa-derived NLBs contained cells that, akin to their embryonic counterparts, were proliferating, expressed ENSSC markers, were bipotent, and capable of generating large colonies in clonogenic cultures and multiple ENS neuronal subtypes. Upon transplantation, cells from NLBs colonized cultured recipient aganglionic chick and human hindgut to generate ganglia-like structures and enteric neurons and glia.nnnCONCLUSIONSnThe results represent a significant practical advance toward the development of definitive cell replenishment therapies for ENS disorders such as Hirschsprungs disease.
Developmental Biology | 2016
Alan J. Burns; Allan M. Goldstein; Donald F. Newgreen; Lincon A. Stamp; Karl-Herbert Schäfer; Marco Metzger; Ryo Hotta; Heather M. Young; Peter W. Andrews; Nikhil Thapar; Jaime Belkind-Gerson; Nadege Bondurand; Joel C. Bornstein; Wood Yee Chan; Kathryn S. E. Cheah; Michael D. Gershon; Robert O. Heuckeroth; Robert M.W. Hofstra; Lothar Just; Raj P. Kapur; Sebastian K. King; Conor J. McCann; Nándor Nagy; Elly Sau-Wai Ngan; Florian Obermayr; Vassilis Pachnis; Pankaj J. Pasricha; Mh Sham; Paul Kwong Hang Tam; Pieter Vanden Berghe
Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.
Gastroenterology | 2011
Yunia Sribudiani; Marco Metzger; Jan Osinga; Amanda Rey; Alan J. Burns; Nikhil Thapar; Robert M. W. Hofstra
BACKGROUND & AIMSnTwo noncoding variations in RET-the T allele of the single nucleotide polymorphism (SNP) rs2435357 (Enh1:C>T) and the A allele of the SNP rs2506004 (Enh2:C>A)-are associated with Hirschsprungs disease. These SNPs are in strong linkage disequilibrium and located in an enhancer element in intron 1 of the RET gene. The T allele of the Enh1 variant results in reduced expression of RET, compared with the C allele, because the T allele disrupts binding to the transcription factor SOX10. We studied whether the A allele of Enh2 (Enh2-A) also affects RET gene expression.nnnMETHODSnWe evaluated the function of Enh1 and Enh2 using luciferase reporter assays with constructs that contained each allele, separately or in combination. We performed in silico analysis to identify transcription activators or repressors that bind to Enh2-C.nnnRESULTSnThe Enh1-T and the Enh2-A alleles reduced expression of the luciferase reporter gene. In silico analysis identified the sequence of Enh2-C and its surrounding sequence (ACGTG) as a potential binding site for the NXF-ARNT2 and SIM2-ARNT2 transcription factor heterodimers. The affinity of NXF-ARNT2 for Enh2-C was confirmed by electrophoresis mobility shift and supershift assays. Transfection of neuroblastoma cell lines with NXF-ARNT2 or SIM2-ARNT2 increased and decreased expression of RET, respectively.nnnCONCLUSIONSnMore than one SNP on an associated haplotype can influence gene expression and ultimately disease phenotype. Binding of the transcription factors NXF, ARNT2, and SIM2 to RET depend on the RET polymorphism of Enh2 and affect RET expression and the development of Hirschsprungs disease.
PLOS ONE | 2014
Susan Hetz; Ali Acikgoez; Ulrike Voss; Karen Nieber; Heidrun Holland; Cindy Hegewald; Holger Till; Roman Metzger; Marco Metzger
Recent advances in the in vitro characterization of human adult enteric neural progenitor cells have opened new possibilities for cell-based therapies in gastrointestinal motility disorders. However, whether these cells are able to integrate within an in vivo gut environment is still unclear. In this study, we transplanted neural progenitor-containing neurosphere-like bodies (NLBs) in a mouse model of hypoganglionosis and analyzed cellular integration of NLB-derived cell types and functional improvement. NLBs were propagated from postnatal and adult human gut tissues. Cells were characterized by immunohistochemistry, quantitative PCR and subtelomere fluorescence in situ hybridization (FISH). For in vivo evaluation, the plexus of murine colon was damaged by the application of cationic surfactant benzalkonium chloride which was followed by the transplantation of NLBs in a fibrin matrix. After 4 weeks, grafted human cells were visualized by combined in situ hybridization (Alu) and immunohistochemistry (PGP9.5, GFAP, SMA). In addition, we determined nitric oxide synthase (NOS)-positive neurons and measured hypertrophic effects in the ENS and musculature. Contractility of treated guts was assessed in organ bath after electrical field stimulation. NLBs could be reproducibly generated without any signs of chromosomal alterations using subtelomere FISH. NLB-derived cells integrated within the host tissue and showed expected differentiated phenotypes i.e. enteric neurons, glia and smooth muscle-like cells following in vivo transplantation. Our data suggest biological effects of the transplanted NLB cells on tissue contractility, although robust statistical results could not be obtained due to the small sample size. Further, it is unclear, which of the NLB cell types including neural progenitors have direct restoring effects or, alternatively may act via ‘bystander’ mechanisms in vivo. Our findings provide further evidence that NLB transplantation can be considered as feasible tool to improve ENS function in a variety of gastrointestinal disorders.
Human Molecular Genetics | 2010
Maria M. Alves; Grzegorz Burzynski; Jean-Marie Delalande; Jan Osinga; Annemieke van der Goot; Amalia M. Dolga; Esther de Graaff; Alice S. Brooks; Marco Metzger; Ulrich Eisel; Iain T. Shepherd; Bart J. L. Eggen; Robert M. W. Hofstra
Abstract Goldberg–Shprintzen syndrome (GOSHS) is a rare clinical disorder characterized by central and enteric nervous system defects. This syndrome is caused by inactivating mutations in the Kinesin Binding Protein (KBP) gene, which encodes a protein of which the precise function is largely unclear. We show that KBP expression is up-regulated during neuronal development in mouse cortical neurons. Moreover, KBP-depleted PC12 cells were defective in nerve growth factor-induced differentiation and neurite outgrowth, suggesting that KBP is required for cell differentiation and neurite development. To identify KBP interacting proteins, we performed a yeast two-hybrid screen and found that KBP binds almost exclusively to microtubule associated or related proteins, specifically SCG10 and several kinesins. We confirmed these results by validating KBP interaction with one of these proteins: SCG10, a microtubule destabilizing protein. Zebrafish studies further demonstrated an epistatic interaction between KBP and SCG10 in vivo . To investigate the possibility of direct interaction between KBP and microtubules, we undertook co-localization and in vitro binding assays, but found no evidence of direct binding. Thus, our data indicate that KBP is involved in neuronal differentiation and that the central and enteric nervous system defects seen in GOSHS are likely caused by microtubule-related defects.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2015
Michael Meir; Sven Flemming; Natalie Burkard; Lisa Bergauer; Marco Metzger; Christoph-Thomas Germer; Nicolas Schlegel
Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling.
Histochemistry and Cell Biology | 2008
Petra M. Bareiss; Marco Metzger; Kai Sohn; Steffen Rupp; Julia S. Frick; Ingo B. Autenrieth; Florian Lang; Heinz Schwarz; Thomas Skutella; Lothar Just
Together with animal experiments, organotypical cell cultures are important models for analyzing cellular interactions of the mucosal epithelium and pathogenic mechanisms in the gastrointestinal tract. Here, we introduce a three-dimensional culture model from the adult mouse colon for cell biological investigations in an in vivo-like environment. These explant cultures were cultured for up to 2xa0weeks and maintained typical characteristics of the intestinal mucosa, including a high-prismatic epithelium with specific epithelial cell-to-cell connections, a basal lamina and various connective tissue cell types, as analyzed with immunohistological and electron microscopic methods. The function of the epithelium was tested by treating the cultures with dexamethasone, which resulted in a strong upregulation of the serum- and glucocorticoid-inducible kinase 1 similar to that found in vivo. The culture system was investigated in infection experiments with the fungal pathogen Candida albicans. Wildtype but not Δcph1/Δefg1-knockout Candida adhered to, penetrated and infiltrated the epithelial barrier. The results demonstrate the potential usefulness of this intestinal in vitro model for studying epithelial cell-cell interactions, cellular signaling and microbiological infections in a three-dimensional cell arrangement.
Frontiers in Aging Neuroscience | 2014
Susan Hetz; Ali Acikgoez; Corinna Moll; Heinz-Georg Jahnke; Andrea A. Robitzki; Roman Metzger; Marco Metzger
The enteric nervous system (ENS) poses the intrinsic innervation of the gastrointestinal tract and plays a critical role for all stages of postnatal life. There is increasing scientific and clinical interest in acquired or age-related gastrointestinal dysfunctions that can be manifested in diseases such as gut constipation or fecal incontinence. In this study, we sought to analyze age-dependent changes in the gene expression profile of the human ENS, particularly in the myenteric plexus. Therefore, we used the laser microdissection technique which has been proven as a feasible tool to analyze distinct cell populations within heterogeneously composed tissues. Full biopsy gut samples were prepared from children (4–12 months), middle aged (48–58 years) and aged donors (70–95 years). Cryosections were histologically stained with H&E, the ganglia of the myenteric plexus identified and RNA isolated using laser microdissection technique. Quantitative PCR was performed for selected neural genes, neurotransmitters and receptors. Data were confirmed on protein level using NADPH-diaphorase staining and immunohistochemistry. As result, we demonstrate age-associated alterations in site-specific gene expression pattern of the ENS. Thus, in the adult and aged distal parts of the colon a marked decrease in relative gene expression of neural key genes like NGFR, RET, NOS1 and a concurrent increase of CHAT were observed. Further, we detected notable regional differences of RET, CHAT, TH, and S100B comparing gene expression in aged proximal and distal colon. Interestingly, markers indicating cellular senescence or oxidative stress (SNCA, CASP3, CAT, SOD2, and TERT) were largely unchanged within the ENS. For the first time, our study also describes the age-dependent expression pattern of all major sodium channels within the ENS. Our results are in line with previous studies showing spatio-temporal differences within the mammalian ENS.
Developmental Biology | 2016
Duco Schriemer; Yunia Sribudiani; Arne IJpma; Dipa Natarajan; Katherine C. MacKenzie; Marco Metzger; Ellen F. Binder; Alan J. Burns; Nikhil Thapar; Robert M.W. Hofstra; Bart J. L. Eggen
The enteric nervous system (ENS) is required for peristalsis of the gut and is derived from Enteric Neural Crest Cells (ENCCs). During ENS development, the RET receptor tyrosine kinase plays a critical role in the proliferation and survival of ENCCs, their migration along the developing gut, and differentiation into enteric neurons. Mutations in RET and its ligand GDNF cause Hirschsprung disease (HSCR), a complex genetic disorder in which ENCCs fail to colonize variable lengths of the distal bowel. To identify key regulators of ENCCs and the pathways underlying RET signaling, gene expression profiles of untreated and GDNF-treated ENCCs from E14.5 mouse embryos were generated. ENCCs express genes that are involved in both early and late neuronal development, whereas GDNF treatment induced neuronal maturation. Predicted regulators of gene expression in ENCCs include the known HSCR genes Ret and Sox10, as well as Bdnf, App and Mapk10. The regulatory overlap and functional interactions between these genes were used to construct a regulatory network that is underlying ENS development and connects to known HSCR genes. In addition, the adenosine receptor A2a (Adora2a) and neuropeptide Y receptor Y2 (Npy2r) were identified as possible regulators of terminal neuronal differentiation in GDNF-treated ENCCs. The human orthologue of Npy2r maps to the HSCR susceptibility locus 4q31.3-q32.3, suggesting a role for NPY2R both in ENS development and in HSCR.