Marco Milan
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Milan.
Environmental Science & Technology | 2017
Luca Carena; Marco Minella; Francesco Barsotti; Marcello Brigante; Marco Milan; Aldo Ferrero; Silvia Berto; Claudio Minero; Davide Vione
When irradiated in paddy-field water, propanil (PRP) undergoes photodegradation by direct photolysis, by reactions with •OH and CO3•-, and possibly also with the triplet states of chromophoric dissolved organic matter. Irradiation also inhibits the nonphotochemical (probably biological) degradation of PRP. The dark- and light-induced pathways can be easily distinguished because 3,4-dichloroaniline (34DCA, a transformation intermediate of considerable environmental concern) is produced with almost 100% yield in the dark but not at all through photochemical pathways. This issue allows an easy assessment of the dark process(es) under irradiation. In the natural environment, we expect PRP photodegradation to be important only in the presence of elevated nitrate and/or nitrite levels, e.g., [NO3-] approaching 1 mmol L-1 (corresponding to approximately 60 mg L-1). Under these circumstances, •OH and CO3•- would play a major role in PRP phototransformation. Because flooded paddy fields are efficient denitrification bioreactors that can achieve decontamination of nitrate-rich water used for irrigation, irrigation with such water would both enhance PRP photodegradation and divert PRP dissipation processes away from the production of 34DCA, at least in the daylight hours.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2015
Marco Milan; Aldo Ferrero; Silvia Fogliatto; Serenella Piano; Francesco Vidotto
The effect of elapsed time between spraying and first leaching event on the leaching behavior of five herbicides (terbuthylazine, S-metolachlor, mesotrione, flufenacet, and isoxaflutole) and two metabolites (desethyl-terbuthylazine and diketonitrile) was evaluated in a 2011–2012 study in northwest Italy. A battery of 12 lysimeters (8.4 m2 long with a depth of 1.8 m) were used in the study, each filled with silty-loam soil and treated during pre-emergence with the selected herbicides by applying a mixture of commercial products Lumax (4 L ha−1) and Merlin Gold (1 L ha−1). During treatment periods, no gravity water was present in lysimeters. Irrigation events capable of producing leaching (40 mm) were conducted on independent groups of three lysimeters on 1 day after treatment (1 DAT), 7 DAT, 14 DAT, and 28 DAT. The series was then repeated 14 days later. Leachate samples were collected a few days after irrigation; compounds were extracted by solid phase extraction and analyzed by high-performance liquid chromatography and gas chromatography–mass spectrometry. Under study conditions, terbuthylazine and S-metolachlor showed the highest leaching potentials. Specifically, S-metolachlor concentrations were always found above 0.25 µg L−1. Desethyl-terbuthylazine was often detected in leached waters, in most cases at concentrations above 0.1 µg L−1. Flufenacet leached only when irrigation occurred close to the time of herbicide spraying. Isoxaflutole and mesotrione were not measured (<0.1 µg L−1), while diketonitrile was detected in concentrations above 0.1 µg L−1 on 1 DAT in 2011 only.
Journal of Environmental Quality | 2012
Marco Milan; Francesco Vidotto; Serenella Piano; Michele Negre; Aldo Ferrero
This study focused on the dissipation of propanil and 3,4 dichloroaniline (3,4 DCA) over time in the soil, field water, inlet water, and outlet water of paddy fields under three management systems: conventional water seeding (CON), conventional water seeding with supplied liquid manure (LMA), and dry seeding (DRY). Propanil dissipation in water was also investigated under laboratory conditions. The field study was conducted from 2004 to 2006 at Vercelli, northern Italy. Propanil and 3,4 DCA showed rapid dissipation in water and soil environments both in the field and in the laboratory. Under controlled conditions, chemical hydrolysis was not detected for either compounds for up to 100 d at pHs of 5, 7, and 9. In the laboratory, the half-life of propanil in irrigation water was 1.1 d; its half-life in soil was routinely measured at <1.0 d (between 0.17 and 1.77 d). 3,4 DCA was found to persist much longer. Measured in all three study years at 50 d after treatment, its concentration ranged between 44 μg kg (CON) and 140 μg kg (DRY). Propanil and 3,4 DCA concentrations in paddy water were particularly high in samples collected at 4 d (2004) and 2 d (2005) after treatment. Maximum concentrations were 54.4 μg L (CON) for propanil (2005) and 113.7 μg L (LMA) for 3,4 DCA (2004). The concentrations of propanil and 3,4 DCA in inlet water were never above 1.1 and 0.3 μg L, respectively, whereas the highest concentration of each compound in outlet water was in samples collected first after treatment in 2005 and 2006. Both chemicals dissipated rapidly in all the soil-water environments but displayed no important differences among the three management systems. In conclusion, propanil and 3,4 DCA did not persist longer in paddy fields. A risk of water network contamination by these compounds may occur only early after herbicide spraying. A water-holding period after herbicide spraying may reduce this risk.
Environmental Technology | 2013
Marco Milan; Francesco Vidotto; Serenella Piano; Michele Negre; Aldo Ferrero
The effectiveness of a 6 m wide vegetative buffer strip for reducing runoff of S-metolachlor, terbuthylazine and desethyl-terbuthylazine was studied in 2007–2008 in Northern Italy. Two cultivated fields, with and without the buffer strip, were compared. Residues of the chemicals were investigated in runoff water collected after runoff events and their dissipation in the soil was studied. The highest concentration of the chemicals in water occurred in samples collected from the unbuffered field at the first runoff events. Losses of terbuthylazine and S-metolachlor in runoff waters were particularly high in 2007 (2.6% and 0.9% of the amount applied, respectively). Soil half-life of terbuthylazine and S-metolachlor ranged between 12.1 and 8.9 days and 16 and 7 days, respectively. The presence of desethyl-terbuthylazine was related to parent compound degradation. The buffer strip allowed an important reduction of chemical content in water (>90%), in particular during the first runoff events.
The Journal of Agricultural Science | 2017
Marco Milan; Aldo Ferrero; Silvia Fogliatto; F. De Palo; Francesco Vidotto
The current study focuses on the dissipation pattern of imazamox (2-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-5-methoxymethylnicotinic acid) in a soil–water environment under the two most adopted rice management systems in Europe, conventional water seeding and dry-seeding. Changes in imazamox concentrations were studied over time in topsoil, field water, irrigation water, outlet water and ground water. The study was performed from 2010 to 2011 in one of the most important rice growing areas of Europe (Vercelli, Northwest Italy). Imazamox dissipated rapidly in both the water and soil environments. In soil, imazamox half-life ranged from 2·2 to 3·3 days in 2010 and from 2·2 to 3·1 days in 2011. In paddy water, imazamox dissipated rapidly and no important differences among the management systems were found. In addition, the study showed that despite the short half-life of imazamox, the herbicide might be transported from treated fields in outlet waters by means of floodgates. The highest concentrations in outlet waters were found in the conventional water-seeded system, at the sampling site close to herbicide spraying. Imazamox residues were even found in inlet waters, suggesting discharge of the herbicide from paddies located upstream or drift during spraying. Imazamox residues in ground waters were always below the quantification limit. Overall, the low imazamox persistence observed during the 2-year study did not allow important differences between the two systems to be revealed. To reduce imazamox discharge from treated fields in the first days after spraying, a useful practice might be to keep water inside the fields for at least a week after spraying.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2013
Marco Milan; Aldo Ferrero; M. Letey; Fernando De Palo; Francesco Vidotto
The influence of buffer strips and soil texture on runoff of flufenacet and isoxaflutole was studied for two years in Northern Italy. The efficacy of buffer strips was evaluated on six plots characterized by different soil textures; two plots had Riva soil (18.6% sand, 63.1% silt, 18.3% clay) while the remaining four plots had Tetto Frati (TF) soil (37.1% sand, 57% silt, 5.9% clay). Additionally, the width of the buffer strips, constituted of spontaneous vegetation grown after crop sowing, was also compared for their ability to abate runoff waters. Chemical residues in water following runoff events were investigated, as well as their dissipation in the soil. After the first runoff events, concentrations of herbicides in water samples collected from Riva plots were as much as four times lower in waters from TF plots. On average of two growing seasons, the field half-life of flufenacet in the upper soil layer (5 cm) ranged between 8.1 and 12.8 days in Riva soil, 8.5 and 9.3 days in TF soil. Isoxaflutole field half-life was less than 1 day. The buffer strip was very affective by the uniformity of the vegetative cover, particularly, at the beginning of the season. In TF plots, concentration differences were generally due to the presence or absence of the buffer strip, regardless of its width.
European Journal of Agronomy | 2016
Francesco Vidotto; Silvia Fogliatto; Marco Milan; Aldo Ferrero
XVII Convegno biennale S.I.R.F.I. “Protezione dei corpi idrici superficiali dall’inquinamento da agrofarmaci” | 2009
Giuseppe Zanin; S. Otto; Roberta Masin; Aldo Ferrero; Marco Milan; Francesco Vidotto
Renewable Agriculture and Food Systems | 2018
Silvia Fogliatto; Marco Milan; Fernando De Palo; Aldo Ferrero; Francesco Vidotto
18th European Weed Research Society Symposium "New approaches for smarter weed management" | 2018
Silvia Fogliatto; Marco Milan; Fernando De Palo; Aldo Ferrero; Francesco Vidotto