Marco Mongillo
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Mongillo.
Circulation Research | 2004
Marco Mongillo; Theresa McSorley; Sandrine Evellin; Arvind Sood; Valentina Lissandron; Anna Terrin; Elaine Huston; Annette Hannawacker; Martin J. Lohse; Tullio Pozzan; Miles D. Houslay; Manuela Zaccolo
Cardiac myocytes have provided a key paradigm for the concept of the compartmentalized cAMP generation sensed by AKAP-anchored PKA. Phosphodiesterases (PDEs) provide the sole route for degrading cAMP in cells and are thus poised to regulate intracellular cAMP gradients. PDE3 and PDE4 represent the major cAMP degrading activities in rat ventriculocytes. By performing real-time imaging of cAMP in situ, we establish the hierarchy of these PDEs in controlling cAMP levels in basal conditions and on stimulation with a β-adrenergic receptor agonist. PDE4, rather than PDE3, appears to be responsible for modulating the amplitude and duration of the cAMP response to beta-agonists. PDE3 and PDE4 localize to distinct compartments and this may underpin their different functional roles. Our findings indicate the importance of distinctly localized PDE isoenzymes in determining compartmentalized cAMP signaling.
Journal of Cell Biology | 2009
Gang Li; Marco Mongillo; Kingtung Chin; Heather P. Harding; David Ron; Andrew R. Marks; Ira Tabas
CHOP turns on ERO1-α to release calcium via IP3R and trigger cell death in response to ER stress.
Circulation Research | 2006
Marco Mongillo; Carlo G. Tocchetti; Anna Terrin; Valentina Lissandron; York Fong Cheung; Wolfgang R. Dostmann; Tullio Pozzan; David A. Kass; Nazareno Paolocci; Miles D. Houslay; Manuela Zaccolo
&bgr;-Adrenergic signaling via cAMP generation and PKA activation mediates the positive inotropic effect of catecholamines on heart cells. Given the large diversity of protein kinase A targets within cardiac cells, a precisely regulated and confined activity of such signaling pathway is essential for specificity of response. Phosphodiesterases (PDEs) are the only route for degrading cAMP and are thus poised to regulate intracellular cAMP gradients. Their spatial confinement to discrete compartments and functional coupling to individual receptors provides an efficient way to control local [cAMP]i in a stimulus-specific manner. By performing real-time imaging of cyclic nucleotides in living ventriculocytes we identify a prominent role of PDE2 in selectively shaping the cAMP response to catecholamines via a pathway involving &bgr;3-adrenergic receptors, NO generation and cGMP production. In cardiac myocytes, PDE2, being tightly coupled to the pool of adenylyl cyclases activated by &bgr;-adrenergic receptor stimulation, coordinates cGMP and cAMP signaling in a novel feedback control loop of the &bgr;-adrenergic pathway. In this, activation of &bgr;3-adrenergic receptors counteracts cAMP generation obtained via stimulation of &bgr;1/&bgr;2-adrenoceptors. Our study illustrates the key role of compartmentalized PDE2 in the control of catecholamine-generated cAMP and furthers our understanding of localized cAMP signaling.
Circulation Research | 2004
Eiki Takimoto; Hunter C. Champion; Diego Belardi; Javid Moslehi; Marco Mongillo; Evanthia Mergia; David C. Montrose; Takayoshi Isoda; Kate Aufiero; Manuela Zaccolo; Wolfgang R. Dostmann; Carolyn J. Smith; David A. Kass
β-Adrenergic agonists stimulate cardiac contractility and simultaneously blunt this response by coactivating NO synthase (NOS3) to enhance cGMP synthesis and activate protein kinase G (PKG-1). cGMP is also catabolically regulated by phosphodiesterase 5A (PDE5A). PDE5A inhibition by sildenafil (Viagra) increases cGMP and is used widely to treat erectile dysfunction; however, its role in the heart and its interaction with β-adrenergic and NOS3/cGMP stimulation is largely unknown. In nontransgenic (control) murine in vivo hearts and isolated myocytes, PDE5A inhibition (sildenafil) minimally altered rest function. However, when the hearts or isolated myocytes were stimulated with isoproterenol, PDE5A inhibition was associated with a suppression of contractility that was coupled to elevated cGMP and increased PKG-1 activity. In contrast, NOS3-null hearts or controls with NOS inhibited by NG-nitro-l-arginine methyl ester, or soluble guanylate cyclase (sGC) inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one, showed no effect of PDE5A inhibition on β-stimulated contractility or PKG-1 activation. This lack of response was not attributable to altered PDE5A gene or protein expression or in vitro PDE5A activity, but rather to an absence of sGC-generated cGMP specifically targeted to PDE5A catabolism and to a loss of PDE5A localization to z-bands. Re-expression of active NOS3 in NOS3-null hearts by adenoviral gene transfer restored PDE5A z-band localization and the antiadrenergic efficacy of PDE5A inhibition. These data support a novel regulatory role of PDE5A in hearts under adrenergic stimulation and highlight specific coupling of PDE5A catabolic regulation with NOS3-derived cGMP attributable to protein subcellular localization and targeted synthetic/catabolic coupling.
Nature Reviews Molecular Cell Biology | 2003
Rüdiger Rudolf; Marco Mongillo; Rosario Rizzuto; Tullio Pozzan
From molecules, single cells and tissues to whole organisms, our insights into Ca2+ signalling and the corresponding physiological phenomena are growing exponentially. Here, we describe the improvements that have been made in the development of the probes and instrumentation that are used for Ca2+ imaging and the expanding applications of Ca2+ imaging in basic and applied research.
Journal of Cell Biology | 2004
Riidiger Rudolf; Marco Mongillo; Paulo J. Magalhães; Tullio Pozzan
Although the importance of mitochondria in patho-physiology has become increasingly evident, it remains unclear whether these organelles play a role in Ca2+ handling by skeletal muscle. This undefined situation is mainly due to technical limitations in measuring Ca2+ transients reliably during the contraction–relaxation cycle. Using two-photon microscopy and genetically expressed “cameleon” Ca2+ sensors, we developed a robust system that enables the measurement of both cytoplasmic and mitochondrial Ca2+ transients in vivo. We show here for the first time that, in vivo and under highly physiological conditions, mitochondria in mammalian skeletal muscle take up Ca2+ during contraction induced by motor nerve stimulation and rapidly release it during relaxation. The mitochondrial Ca2+ increase is delayed by a few milliseconds compared with the cytosolic Ca2+ rise and occurs both during a single twitch and upon tetanic contraction.
Cell Metabolism | 2015
Tatiana Varanita; Maria Eugenia Soriano; Vanina Romanello; Tania Zaglia; Rubén Quintana-Cabrera; Martina Semenzato; Roberta Menabò; Veronica Costa; Gabriele Civiletto; Paola Pesce; Carlo Viscomi; Massimo Zeviani; Fabio Di Lisa; Marco Mongillo; Marco Sandri; Luca Scorrano
Summary Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo.
Journal of Clinical Investigation | 2008
Andrew M. Bellinger; Marco Mongillo; Andrew R. Marks
Over the past century, understanding the mechanisms underlying muscle fatigue and weakness has been the focus of much investigation. However, the dominant theory in the field, that lactic acidosis causes muscle fatigue, is unlikely to tell the whole story. Recently, dysregulation of sarcoplasmic reticulum (SR) Ca(2+) release has been associated with impaired muscle function induced by a wide range of stressors, from dystrophy to heart failure to muscle fatigue. Here, we address current understandings of the altered regulation of SR Ca(2+) release during chronic stress, focusing on the role of the SR Ca(2+) release channel known as the type 1 ryanodine receptor.
Cell Metabolism | 2013
Giulietta Di Benedetto; Elisa Scalzotto; Marco Mongillo; Tullio Pozzan
While the role of mitochondrial Ca²⁺ homeostasis in cell pathophysiology is widely accepted, the possibility that cAMP regulates mitochondrial functions has only recently received experimental support. The site of cAMP production, its targets, and its functions in the organelles remain uncertain. Using a variety of genetic/pharmacological tools, we here demonstrate that the mitochondrial inner membrane is impermeable to cytosolic cAMP, while an autonomous cAMP signaling toolkit is expressed in the matrix. We demonstrate that rises in matrix Ca²⁺ powerfully stimulate cAMP increases within mitochondria and that matrix cAMP levels regulate their ATP synthesizing efficiency. In cardiomyocyte cultures, mitochondrial cAMP can be increased by treatments that augment the frequency and amplitude of Ca²⁺ oscillations within the cytosol and organelles, revealing that mitochondria can integrate an oscillatory Ca²⁺ signal to increase cAMP in their matrix. The present data reveal the existence, within mitochondria, of a hitherto unknown crosstalk between Ca²⁺ and cAMP.
Journal of Clinical Investigation | 2014
Tania Zaglia; Giulia Milan; Aaron Ruhs; Mauro Franzoso; Enrico Bertaggia; Nicola Pianca; Andrea Carpi; Pierluigi Carullo; Paola Pesce; David Sacerdoti; Cristiano Sarais; Daniele Catalucci; Marcus Krüger; Marco Mongillo; Marco Sandri
Cardiomyocyte proteostasis is mediated by the ubiquitin/proteasome system (UPS) and autophagy/lysosome system and is fundamental for cardiac adaptation to both physiologic (e.g., exercise) and pathologic (e.g., pressure overload) stresses. Both the UPS and autophagy/lysosome system exhibit reduced efficiency as a consequence of aging, and dysfunction in these systems is associated with cardiomyopathies. The muscle-specific ubiquitin ligase atrogin-1 targets signaling proteins involved in cardiac hypertrophy for degradation. Here, using atrogin-1 KO mice in combination with in vivo pulsed stable isotope labeling of amino acids in cell culture proteomics and biochemical and cellular analyses, we identified charged multivesicular body protein 2B (CHMP2B), which is part of an endosomal sorting complex (ESCRT) required for autophagy, as a target of atrogin-1-mediated degradation. Mice lacking atrogin-1 failed to degrade CHMP2B, resulting in autophagy impairment, intracellular protein aggregate accumulation, unfolded protein response activation, and subsequent cardiomyocyte apoptosis, all of which increased progressively with age. Cellular proteostasis alterations resulted in cardiomyopathy characterized by myocardial remodeling with interstitial fibrosis, with reduced diastolic function and arrhythmias. CHMP2B downregulation in atrogin-1 KO mice restored autophagy and decreased proteotoxicity, thereby preventing cell death. These data indicate that atrogin-1 promotes cardiomyocyte health through mediating the interplay between UPS and autophagy/lysosome system and its alteration promotes development of cardiomyopathies.