Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Moroldo is active.

Publication


Featured researches published by Marco Moroldo.


Frontiers in Immunology | 2015

Defining Mononuclear Phagocyte Subset Homology Across Several Distant Warm-Blooded Vertebrates Through Comparative Transcriptomics

Thien-Phong Vu Manh; Jamila Elhmouzi-Younes; Céline Urien; Suzana Ruscanu; Luc Jouneau; Mickael Bourge; Marco Moroldo; Gilles Foucras; Henri Salmon; Hélène Marty; Pascale Quéré; Nicolas Bertho; Pierre Boudinot; Marc Dalod; Isabelle Schwartz-Cornil

Mononuclear phagocytes are organized in a complex system of ontogenetically and functionally distinct subsets, that has been best described in mouse and to some extent in human. Identification of homologous mononuclear phagocyte subsets in other vertebrate species of biomedical, economic, and environmental interest is needed to improve our knowledge in physiologic and physio-pathologic processes, and to design intervention strategies against a variety of diseases, including zoonotic infections. We developed a streamlined approach combining refined cell sorting and integrated comparative transcriptomics analyses which revealed conservation of the mononuclear phagocyte organization across human, mouse, sheep, pigs and, in some respect, chicken. This strategy should help democratizing the use of omics analyses for the identification and study of cell types across tissues and species. Moreover, we identified conserved gene signatures that enable robust identification and universal definition of these cell types. We identified new evolutionarily conserved gene candidates and gene interaction networks for the molecular regulation of the development or functions of these cell types, as well as conserved surface candidates for refined subset phenotyping throughout species. A phylogenetic analysis revealed that orthologous genes of the conserved signatures exist in teleost fishes and apparently not in Lamprey.


Scientific Reports | 2016

Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse

Núria Mach; Sandra Plancade; Alicja Elzbieta Pacholewska; Jérôme Lecardonnel; Julie Rivière; Marco Moroldo; Anne Vaiman; Caroline Morgenthaler; Marine Beinat; Alizée Nevot; Céline Robert; Eric Barrey

The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.


PLOS ONE | 2014

PB1-F2 Attenuates Virulence of Highly Pathogenic Avian H5N1 Influenza Virus in Chickens

Olivier Leymarie; Carissa Embury-Hyatt; Christophe Chevalier; Luc Jouneau; Marco Moroldo; Bruno Da Costa; Yohannes Berhane; Bernard Delmas; Hana Weingartl; Ronan Le Goffic

Highly pathogenic avian influenza virus (HPAIV) is a permanent threat due to its capacity to cross species barriers and generate severe infections and high mortality in humans. Recent findings have highlighted the potential role of PB1-F2, a small accessory influenza protein, in the pathogenesis process mediated by HPAIV in mammals. In this study, using a recombinant H5N1 HPAIV (wt) and its PB1-F2-deleted mutant (ΔF2), we studied the effects of PB1-F2 in a chicken model. Unexpectedly, when using low inoculation dose we observed that the wt-infected chickens had a higher survival rate than the ΔF2-infected chickens, a feature that contrasts with what is usually observed in mammals. High inoculation dose had similar mortality rate for both viruses, and comparison of the bio-distribution of the two viruses indicated that the expression of PB1-F2 allows a better spreading of the virus within chicken embryos. Transcriptomic profiles of lungs and blood cells were characterized at two days post-infection in chickens inoculated with the wild type (wt) or the ΔF2 mutant viruses. In lungs, the expression of PB1-F2 during the infection induced pathways related to calcium signaling and repressed a large panel of immunological functions. In blood cells, PB1-F2 was associated with a gene signature specific for mitochondrial dysfunction and down-modulated leucocytes activation. Finally we compared the effect of PB1-F2 in lungs of chickens and mice. We identified that gene signature associated to tissue damages is a PB1-F2 feature shared by the two species; by contrast, the early inhibition of immune response mediated by PB1-F2 observed in chickens is not seen in mice. In summary, our data suggest that PB1-F2 expression deeply affect the immune response in chickens in a way that may attenuate pathogenicity at low infection dose, a feature differing from what was previously observed in mammal species.


Frontiers in Physiology | 2017

The Effects of Weaning Methods on Gut Microbiota Composition and Horse Physiology

Núria Mach; Aline Foury; Sandra Kittelmann; Fabrice Reigner; Marco Moroldo; Maria Ballester; Diane Esquerre; Julie Rivière; Guillaume Sallé; Philippe Gérard; Marie-Pierre Moisan; Léa Lansade

Weaning has been described as one of the most stressful events in the life of horses. Given the importance of the interaction between the gut-brain axis and gut microbiota under stress, we evaluated (i) the effect of two different weaning methods on the composition of gut microbiota across time and (ii) how the shifts of gut microbiota composition after weaning affect the host. A total of 34 foals were randomly subjected to a progressive (P) or an abrupt (A) weaning method. In the P method, mares were separated from foals at progressively increasing intervals every day, starting from five min during the fourth week prior to weaning and ending with 6 h during the last week before weaning. In the A method, mares and foals were never separated prior to weaning (0 d). Different host phenotypes and gut microbiota composition were studied across 6 age strata (days −30, 0, 3, 5, 7, and 30 after weaning) by 16S rRNA gene sequencing. Results revealed that the beneficial species belonging to Prevotella, Paraprevotella, and Ruminococcus were more abundant in the A group prior to weaning compared to the P group, suggesting that the gut microbiota in the A cohort was better adapted to weaning. Streptococcus, on the other hand, showed the opposite pattern after weaning. Fungal loads, which are thought to increase the capacity for fermenting the complex polysaccharides from diet, were higher in P relative to A. Beyond the effects of weaning methods, maternal separation at weaning markedly shifted the composition of the gut microbiota in all foals, which fell into three distinct community types at 3 days post-weaning. Most genera in community type 2 (i.e., Eubacterium, Coprococcus, Clostridium XI, and Blautia spp.) were negatively correlated with salivary cortisol levels, but positively correlated with telomere length and N-butyrate production. Average daily gain was also greater in the foals harboring a community type 2 microbiota. Therefore, community type 2 is likely to confer better stress response adaptation following weaning. This study identified potential microbial biomarkers that could predict the likelihood for physiological adaptations to weaning in horses, although causality remains to be addressed.


Scientific Reports | 2017

Muscle transcriptome analysis reveals molecular pathways and biomarkers involved in extreme ultimate pH and meat defect occurrence in chicken

Stéphane Beauclercq; Christelle Hennequet-Antier; Christophe Praud; Estelle Godet; Anne Collin; Sophie Tesseraud; Sonia Métayer-Coustard; Marie Bourin; Marco Moroldo; Frédéric Martins; Sandrine Lagarrigue; Elisabeth Le Bihan-Duval; Cécile Berri

The processing ability and sensory quality of chicken breast meat are highly related to its ultimate pH (pHu), which is mainly determined by the amount of glycogen in the muscle at death. To unravel the molecular mechanisms underlying glycogen and meat pHu variations and to identify predictive biomarkers of these traits, a transcriptome profiling analysis was performed using an Agilent custom chicken 8 × 60 K microarray. The breast muscle gene expression patterns were studied in two chicken lines experimentally selected for high (pHu+) and low (pHu−) pHu values of the breast meat. Across the 1,436 differentially expressed (DE) genes found between the two lines, many were involved in biological processes related to muscle development and remodelling and carbohydrate and energy metabolism. The functional analysis showed an intensive use of carbohydrate metabolism to produce energy in the pHu− line, while alternative catabolic pathways were solicited in the muscle of the pHu+ broilers, compromising their muscle development and integrity. After a validation step on a population of 278 broilers using microfluidic RT-qPCR, 20 genes were identified by partial least squares regression as good predictors of the pHu, opening new perspectives of screening broilers likely to present meat quality defects.


Animal Reproduction Science | 2014

Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo

Barbara Schmaltz-Panneau; Luc Jouneau; Pierre Osteil; Yann Tapponnier; Marielle Afanassieff; Marco Moroldo; Alice Jouneau; Nathalie Daniel; Catherine Archilla; Pierre Savatier; Véronique Duranthon

Pluripotency refers to the ability for a single cell to differentiate into the three embryonic germ layers. In mice, two types of pluripotent stem cells with different features have been obtained in vitro. Naive pluripotent stem cells are derived from the inner cell mass (ICM) of early blastocyst (ESCs) or reprogrammed from somatic cells (iPSCs), while primed pluripotent stem cells are derived from late epiblast (EpiSCs). Cells in a primed pluripotency state are more prone to differentiation and only naive pluripotent stem cells form germline chimera after injection into a blastocyst. Despite numerous attempts, capturing pluripotency in domestic mammalian species has been largely unsuccessful and only primed pluripotent stem cells have been obtained even starting from early blastocyst or reprogramming somatic cells. This raises two questions: whether inner cell mass and epiblast are in naive or primed pluripotency state and what are the transcriptome features of ESCs and iPSCs in these species. To address these questions we compared rabbit ICM, epiblast, ESCs and iPSCs transcriptomes. Our results show that: (i) molecular signature of naïve and primed pluripotency may differ between mice and rabbit embryos; (ii) Genes involved in G1/S transition of the cell-cycle, actin cytoskeleton signaling, development and differentiation pathways are upregulated in ESCs and iPSCs; (iii) ICM and epiblast upregulate pluripotency associated genes and display specific metabolic features. These results denote an advanced primed state of pluripotency for rabbit ESCs and iPSCs and evidence specific functions for ICM and epiblast that are not shared by ESCs and iPSCs.


Journal of Virology | 2013

Dendritic Cell Subtypes from Lymph Nodes and Blood Show Contrasted Gene Expression Programs upon Bluetongue Virus Infection

Suzana Ruscanu; Luc Jouneau; Céline Urien; Mickael Bourge; Jérôme Lecardonnel; Marco Moroldo; Benoit Loup; Marc Dalod; Jamila Elhmouzi-Younes; Claudia Bevilacqua; Jayne Hope; Damien Vitour; Stéphan Zientara; Gilles Meyer; Isabelle Schwartz-Cornil

ABSTRACT Human and animal hemorrhagic viruses initially target dendritic cells (DCs). It has been proposed, but not documented, that both plasmacytoid DCs (pDCs) and conventional DCs (cDCs) may participate in the cytokine storm encountered in these infections. In order to evaluate the contribution of DCs in hemorrhagic virus pathogenesis, we performed a genome-wide expression analysis during infection by Bluetongue virus (BTV), a double-stranded RNA virus that induces hemorrhagic fever in sheep and initially infects cDCs. Both pDCs and cDCs accumulated in regional lymph nodes and spleen during BTV infection. The gene response profiles were performed at the onset of the disease and markedly differed with the DC subtypes and their lymphoid organ location. An integrative knowledge-based analysis revealed that blood pDCs displayed a gene signature related to activation of systemic inflammation and permeability of vasculature. In contrast, the gene profile of pDCs and cDCs in lymph nodes was oriented to inhibition of inflammation, whereas spleen cDCs did not show a clear functional orientation. These analyses indicate that tissue location and DC subtype affect the functional gene expression program induced by BTV and suggest the involvement of blood pDCs in the inflammation and plasma leakage/hemorrhage during BTV infection in the real natural host of the virus. These findings open the avenue to target DCs for therapeutic interventions in viral hemorrhagic diseases.


PLOS ONE | 2017

Transcriptomic profiling of a chicken lung epithelial cell line (CLEC213) reveals a mitochondrial respiratory chain activity boost during influenza virus infection

Léa Meyer; Olivier Leymarie; Christophe Chevalier; Evelyne Esnault; Marco Moroldo; Bruno Da Costa; Sonia Georgeault; Philippe Roingeard; Bernard Delmas; Pascale Quéré; Ronan Le Goffic

Avian Influenza virus (AIV) is a major concern for the global poultry industry. Since 2012, several countries have reported AIV outbreaks among domestic poultry. These outbreaks had tremendous impact on poultry production and socio-economic repercussion on farmers. In addition, the constant emergence of highly pathogenic AIV also poses a significant risk to human health. In this study, we used a chicken lung epithelial cell line (CLEC213) to gain a better understanding of the molecular consequences of low pathogenic AIV infection in their natural host. Using a transcriptome profiling approach based on microarrays, we identified a cluster of mitochondrial genes highly induced during the infection. Interestingly, most of the regulated genes are encoded by the mitochondrial genome and are involved in the oxidative phosphorylation metabolic pathway. The biological consequences of this transcriptomic induction result in a 2.5- to 4-fold increase of the ATP concentration within the infected cells. PB1-F2, a viral protein that targets the mitochondria was not found associated to the boost of activity of the respiratory chain. We next explored the possibility that ATP may act as a host-derived danger signal (through production of extracellular ATP) or as a boost to increase AIV replication. We observed that, despite the activation of the P2X7 purinergic receptor pathway, a 1mM ATP addition in the cell culture medium had no effect on the virus replication in our epithelial cell model. Finally, we found that oligomycin, a drug that inhibits the oxidative phosphorylation process, drastically reduced the AIV replication in CLEC213 cells, without apparent cellular toxicity. Collectively, our results suggest that AIV is able to boost the metabolic capacities of its avian host in order to provide the important energy needs required to produce progeny virus.


Immunogenetics | 2018

Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing

Carol Lee; Marco Moroldo; Alvaro Perdomo-Sabogal; Núria Mach; Sylvain Marthey; Jérôme Lecardonnel; Per Wahlberg; Amanda Y. Chong; Jordi Estellé; Simon Y. W. Ho; Claire Rogel-Gaillard; Jaime Gongora

The major histocompatibility complex (MHC) is a key genomic model region for understanding the evolution of gene families and the co-evolution between host and pathogen. To date, MHC studies have mostly focused on species from major vertebrate lineages. The evolution of MHC classical (Ia) and non-classical (Ib) genes in pigs has attracted interest because of their antigen presentation roles as part of the adaptive immune system. The pig family Suidae comprises over 18 extant species (mostly wild), but only the domestic pig has been extensively sequenced and annotated. To address this, we used a DNA-capture approach, with probes designed from the domestic pig genome, to generate MHC data for 11 wild species of pigs and their closest living family, Tayassuidae. The approach showed good efficiency for wild pigs (~80% reads mapped, ~87× coverage), compared to tayassuids (~12% reads mapped, ~4× coverage). We retrieved 145 MHC loci across both families. Phylogenetic analyses show that the class Ia and Ib genes underwent multiple duplications and diversifications before suids and tayassuids diverged from their common ancestor. The histocompatibility genes mostly form orthologous groups and there is genetic differentiation for most of these genes between Eurasian and sub-Saharan African wild pigs. Tests of selection showed that the peptide-binding region of class Ib genes was under positive selection. These findings contribute to better understanding of the evolutionary history of the MHC, specifically, the class I genes, and provide useful data for investigating the immune response of wild populations against pathogens.


Genome Announcements | 2016

Draft Anaplasma phagocytophilum Genome Sequences from Five Cows, Two Horses, and One Roe Deer Collected in Europe

Thibaud Dugat; Marie-Noëlle Rossignol; Olivier Rué; Valentin Loux; Sylvain Marthey; Marco Moroldo; Cornelia Silaghi; Dirk Höper; Julia Katharina Fröhlich; Martin Pfeffer; Erich Zweygarth; Anne-Claire Lagrée; Henri-Jean Boulouis; Nadia Haddad

ABSTRACT Anaplasma phagocytophilum is a zoonotic tick-borne intracellular bacterium responsible for granulocytic anaplasmosis. As it is difficult to isolate and cultivate, only 20 A. phagocytophilum genomes have been sequenced to date. Here, we present eight A. phagocytophilum genome sequences obtained using alternative approaches based on sequence capture technology.

Collaboration


Dive into the Marco Moroldo's collaboration.

Top Co-Authors

Avatar

Sylvain Marthey

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Lecardonnel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Diane Esquerre

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Anis Djari

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Klopp

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jordi Estellé

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre-François Roux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christelle Hennequet-Antier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Colette Désert

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge