Marco Mughetti
University of Bologna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Mughetti.
Communications in Partial Differential Equations | 2007
Marco Mughetti; Cesare Parenti; Alberto Parmeggiani
We study the validity of Hörmanders inequality for some classes of pseudo-differential operators for which the transversal ellipticity condition does not hold.
Archive | 2010
Antonio Bove; Marco Mughetti; David S. Tartakoff
In this paper we consider the analogue of Kohn’s operator but with a point singularity,
Revista Matematica Iberoamericana | 2006
Lidia Maniccia; Marco Mughetti
Communications in Partial Differential Equations | 2005
Marco Mughetti; Fabio Nicola
P = BB^* + B^* (t^{2\ell } + x^{2k} )B, B = D_x + ix^{q - 1} D_t .
Annali Dell'universita' Di Ferrara | 2003
Lidia Maniccia; Marco Mughetti
Transactions of the American Mathematical Society | 2007
Lidia Maniccia; Marco Mughetti
.
Proceedings of the American Mathematical Society | 2004
Marco Mughetti; Fabio Nicola
We prove Feffermans SAK Principle for a class of hypoelliptic operators on R2 whose nonnegative symbol vanishes anisotropically on the characteristic manifold.
Communications in Partial Differential Equations | 2003
Marco Mughetti
ABSTRACT We are concerned with a lower bound with a gain of k/2 + 1 derivatives for the class OP N m, k (X, Σ) of pesudodifferential operators with characteristics of even multiplicity k ≥ 2. In the case of double characteristics operators (k = 2), we recapture a well-known inequality due to Hörmander.
Journal of Functional Analysis | 2018
Paolo Albano; Antonio Bove; Marco Mughetti
SuntoNel presente articolo si mostra come il calcolo pseudodifferenziale costruito da Boutet de Monvel possa essere esteso ad una classe di operatori ipoellittici con degenerazione anisotropa ed espresso in termini di una opportuna metrica di Weyl-Hörmander. Il calcolo sviluppato viene usato nella costruzione di una parametrice nella classe di operatori considerata.AbstractWe set Boutet de Monvels Calculus for hypoelliptic operators (in the case of flat symplectic characteristic manifold) in a Weyl-Hörmander framework that also contains anisotropically vanishing symbols. In this context we construct a parametrix for the related operators.
Analysis & PDE | 2013
Antonio Bove; Marco Mughetti; David S. Tartakoff
We prove Feffermans SAK Principle for a class of classical pseudodifferential operators on with symplectic characteristic manifold