Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Pavone is active.

Publication


Featured researches published by Marco Pavone.


Proceedings of the IEEE | 2011

Dynamic Vehicle Routing for Robotic Systems

Francesco Bullo; Emilio Frazzoli; Marco Pavone; Ketan Savla; Stephen L. Smith

Recent years have witnessed great advancements in the science and technology of autonomy, robotics, and networking. This paper surveys recent concepts and algorithms for dynamic vehicle routing (DVR), that is, for the automatic planning of optimal multivehicle routes to perform tasks that are generated over time by an exogenous process. We consider a rich variety of scenarios relevant for robotic applications. We begin by reviewing the basic DVR problem: demands for service arrive at random locations at random times and a vehicle travels to provide on-site service while minimizing the expected wait time of the demands. Next, we treat different multivehicle scenarios based on different models for demands (e.g., demands with different priority levels and impatient demands), vehicles (e.g., motion constraints, communication, and sensing capabilities), and tasks. The performance criterion used in these scenarios is either the expected wait time of the demands or the fraction of demands serviced successfully. In each specific DVR scenario, we adopt a rigorous technical approach that relies upon methods from queueing theory, combinatorial optimization, and stochastic geometry. First, we establish fundamental limits on the achievable performance, including limits on stability and quality of service. Second, we design algorithms, and provide provable guarantees on their performance with respect to the fundamental limits.


Journal of Dynamic Systems Measurement and Control-transactions of The Asme | 2007

Decentralized Policies for Geometric Pattern Formation and Path Coverage

Marco Pavone; Emilio Frazzoli

This paper presents a decentralized control policy for symmetric formations in multiagent systems. It is shown that n agents, each one pursuing its leading neighbor along the line of sight rotated by a common offset angle a, eventually converge to a single point, a circle or a logarithmic spiral pattern, depending on the value of a. In the final part of the paper, we present a strategy to make the agents totally anonymous, and we discuss a potential application to coverage path planning.


Frazzoli | 2014

Toward a Systematic Approach to the Design and Evaluation of Automated Mobility-on-Demand Systems: A Case Study in Singapore

Kevin Spieser; Kyle Treleaven; Rick Zhang; Emilio Frazzoli; Daniel Morton; Marco Pavone

The objective of this work is to provide analytical guidelines and financial justification for the design of shared-vehicle mobility-on-demand systems. Specifically, we consider the fundamental issue of determining the appropriate number of vehicles to field in the fleet, and estimate the financial benefits of several models of car sharing. As a case study, we consider replacing all modes of personal transportation in a city such as Singapore with a fleet of shared automated vehicles, able to drive themselves, e.g., to move to a customer’s location. Using actual transportation data, our analysis suggests a shared-vehicle mobility solution can meet the personal mobility needs of the entire population with a fleet whose size is approximately 1/3 of the total number of passenger vehicles currently in operation.


The International Journal of Robotics Research | 2015

Fast marching tree

Lucas Janson; Edward Schmerling; Ashley A. Clark; Marco Pavone

In this paper we present a novel probabilistic sampling-based motion planning algorithm called the Fast Marching Tree algorithm (FMT*). The algorithm is specifically aimed at solving complex motion planning problems in high-dimensional configuration spaces. This algorithm is proven to be asymptotically optimal and is shown to converge to an optimal solution faster than its state-of-the-art counterparts, chiefly PRM* and RRT*. The FMT* algorithm performs a ‘lazy’ dynamic programming recursion on a predetermined number of probabilistically drawn samples to grow a tree of paths, which moves steadily outward in cost-to-arrive space. As such, this algorithm combines features of both single-query algorithms (chiefly RRT) and multiple-query algorithms (chiefly PRM), and is reminiscent of the Fast Marching Method for the solution of Eikonal equations. As a departure from previous analysis approaches that are based on the notion of almost sure convergence, the FMT* algorithm is analyzed under the notion of convergence in probability: the extra mathematical flexibility of this approach allows for convergence rate bounds—the first in the field of optimal sampling-based motion planning. Specifically, for a certain selection of tuning parameters and configuration spaces, we obtain a convergence rate bound of order O(n −1/d+ρ ), where n is the number of sampled points, d is the dimension of the configuration space, and ρ is an arbitrarily small constant. We go on to demonstrate asymptotic optimality for a number of variations on FMT*, namely when the configuration space is sampled non-uniformly, when the cost is not arc length, and when connections are made based on the number of nearest neighbors instead of a fixed connection radius. Numerical experiments over a range of dimensions and obstacle configurations confirm our theoretical and heuristic arguments by showing that FMT*, for a given execution time, returns substantially better solutions than either PRM* or RRT*, especially in high-dimensional configuration spaces and in scenarios where collision-checking is expensive.


IEEE Transactions on Automatic Control | 2011

Adaptive and Distributed Algorithms for Vehicle Routing in a Stochastic and Dynamic Environment

Marco Pavone; Emilio Frazzoli; Francesco Bullo

In this paper, we present adaptive and distributed algorithms for motion coordination of a group of m vehicles. The vehicles must service demands whose time of arrival, spatial location, and service requirement are stochastic; the objective is to minimize the average time demands spend in the system. The general problem is known as the m-vehicle Dynamic Traveling Repairman Problem (m-DTRP). The best previously known control algorithms rely on centralized task assignment and are not robust against changes in the environment. In this paper, we first devise new control policies for the 1-DTRP that: i) are provably optimal both in light-load conditions (i.e., when the arrival rate for the demands is small) and in heavy-load conditions (i.e., when the arrival rate for the demands is large), and ii) are adaptive, in particular, they are robust against changes in load conditions. Then, we show that specific partitioning policies, whereby the environment is partitioned among the vehicles and each vehicle follows a certain set of rules within its own region, are optimal in heavy-load conditions. Building upon the previous results, we finally design control policies for the m-DTRP that i) are adaptive and distributed, and ii) have strong performance guarantees in heavy-load conditions and stabilize the system in any load condition.


IEEE Transactions on Automatic Control | 2011

Distributed Algorithms for Environment Partitioning in Mobile Robotic Networks

Marco Pavone; Alessandro Arsie; Emilio Frazzoli; Francesco Bullo

A widely applied strategy for workload sharing is to equalize the workload assigned to each resource. In mobile multiagent systems, this principle directly leads to equitable partitioning policies whereby: 1) the environment is equitably divided into subregions of equal measure; 2) one agent is assigned to each subregion; and 3) each agent is responsible for service requests originating within its own subregion. The current lack of distributed algorithms for the computation of equitable partitions limits the applicability of equitable partitioning policies to limited-size multiagent systems operating in known, static environments. In this paper, first we design provably correct and spatially distributed algorithms that allow a team of agents to compute a convex and equitable partition of a convex environment. Second, we discuss how these algorithms can be extended so that a team of agents can compute, in a spatially distributed fashion, convex and equitable partitions with additional features, e.g., equitable and median Voronoi diagrams. Finally, we discuss two application domains for our algorithms, namely dynamic vehicle routing for mobile robotic networks and wireless ad hoc networks. Through these examples, we show how one can couple the algorithms presented in this paper with equitable partitioning policies to make these amenable to distributed implementation. More in general, we illustrate a systematic approach to devise spatially distributed control policies for a large variety of multiagent coordination problems. Our approach is related to the classic Lloyd algorithm and exploits the unique features of power diagrams.


The International Journal of Robotics Research | 2012

Robotic load balancing for mobility-on-demand systems

Marco Pavone; Stephen L. Smith; Emilio Frazzoli; Daniela Rus

In this paper we develop methods for maximizing the throughput of a mobility-on-demand urban transportation system. We consider a finite group of shared vehicles, located at a set of stations. Users arrive at the stations, pickup vehicles, and drive (or are driven) to their destination station where they drop-off the vehicle. When some origins and destinations are more popular than others, the system will inevitably become out of balance: vehicles will build up at some stations, and become depleted at others. We propose a robotic solution to this rebalancing problem that involves empty robotic vehicles autonomously driving between stations. Specifically, we utilize a fluid model for the customers and vehicles in the system. Then, we develop a rebalancing policy that lets every station reach an equilibrium in which there are excess vehicles and no waiting customers and that minimizes the number of robotic vehicles performing rebalancing trips. We show that the optimal rebalancing policy can be found as the solution to a linear program. We use this solution to develop a real-time rebalancing policy which can operate in highly variable environments. Finally, we verify policy performance in a simulated mobility-on-demand environment and in hardware experiments.


The International Journal of Robotics Research | 2016

Control of robotic mobility-on-demand systems

Rick Zhang; Marco Pavone

In this paper we present queueing-theoretical methods for the modeling, analysis, and control of autonomous mobility-on-demand (MOD) systems wherein robotic, self-driving vehicles transport customers within an urban environment and rebalance themselves to ensure acceptable quality of service throughout the network. We first cast an autonomous MOD system within a closed Jackson network model with passenger loss. It is shown that an optimal rebalancing algorithm minimizing the number of (autonomously) rebalancing vehicles while keeping vehicle availabilities balanced throughout the network can be found by solving a linear program. The theoretical insights are used to design a robust, real-time rebalancing algorithm, which is applied to a case study of New York City and implemented on an eight-vehicle mobile robot testbed. The case study of New York shows that the current taxi demand in Manhattan can be met with about 8,000 robotic vehicles (roughly 70% of the size of the current taxi fleet operating in Manhattan). Finally, we extend our queueing-theoretical setup to include congestion effects, and study the impact of autonomously rebalancing vehicles on overall congestion. Using a simple heuristic algorithm, we show that additional congestion due to autonomous rebalancing can be effectively avoided on a road network. Collectively, this paper provides a rigorous approach to the problem of system-wide coordination of autonomously driving vehicles, and provides one of the first characterizations of the sustainability benefits of robotic transportation networks.


Journal of Guidance Control and Dynamics | 2010

Distributed Control of Spacecraft Formations via Cyclic Pursuit: Theory and Experiments

Jaime L. Ramirez-Riberos; Marco Pavone; Emilio Frazzoli; David W. Miller

In this paper, distributed control policies for spacecraft formations that draw inspiration from the simple idea of cyclic pursuit are studied. First studied are cyclic-pursuit control laws for both single- and double-integrator models in three dimensions. In particular, control laws are developed that only require relative measurements of position and velocity with respect to the two leading neighbors in the ring topology of cyclic pursuit and that allow convergence to a variety of symmetric formations, including evenly spaced circular and elliptic formations and evenly spaced Archimedes spirals. Second, potential applications are discussed, including spacecraft formation for interferometric imaging. Finally, experimental results obtained by implementing the aforementioned control laws on the Synchronized Position Hold Engage Reorient Experimental Satellite testbed onboard the International Space Station are presented and discussed.


Mobile Networks and Applications | 2009

A Stochastic and Dynamic Vehicle Routing Problem with Time Windows and Customer Impatience

Marco Pavone; Nabhendra Bisnik; Emilio Frazzoli; Volkan Isler

In this paper, we study the problem of designing motion strategies for a team of mobile agents, required to fulfill request for on-site service in a given planar region. In our model, each service request is generated by a spatio-temporal stochastic process; once a service request has been generated, it remains active for a certain deterministic amount of time, and then expires. An active service request is fulfilled when one of the mobile agents visits the location of the request. Specific problems we investigate are the following: what is the minimum number of mobile agents needed to ensure that a certain fraction of service requests is fulfilled before expiration? What strategy should they use to ensure that this objective is attained? This problem can be viewed as the stochastic and dynamic version of the well-known vehicle routing problem with time windows. We also extend our analysis to the case in which the time service requests remain active is itself a random variable, describing customer impatience. The customers’ impatience is only known to the mobile agents via prior statistics. In this case, it is desired to minimize the fraction of service requests missed because of impatience. Finally, we show how the routing strategies presented in the paper can be executed in a distributed fashion.

Collaboration


Dive into the Marco Pavone's collaboration.

Top Co-Authors

Avatar

Emilio Frazzoli

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Issa A. D. Nesnas

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge