Marco Polin
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Polin.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Vasily Kantsler; Jörn Dunkel; Marco Polin; Raymond E. Goldstein
Interactions between swimming cells and surfaces are essential to many microbiological processes, from bacterial biofilm formation to human fertilization. However, despite their fundamental importance, relatively little is known about the physical mechanisms that govern the scattering of flagellated or ciliated cells from solid surfaces. A more detailed understanding of these interactions promises not only new biological insights into structure and dynamics of flagella and cilia but may also lead to new microfluidic techniques for controlling cell motility and microbial locomotion, with potential applications ranging from diagnostic tools to therapeutic protein synthesis and photosynthetic biofuel production. Due to fundamental differences in physiology and swimming strategies, it is an open question of whether microfluidic transport and rectification schemes that have recently been demonstrated for pusher-type microswimmers such as bacteria and sperm cells, can be transferred to puller-type algae and other motile eukaryotes, because it is not known whether long-range hydrodynamic or short-range mechanical forces dominate the surface interactions of these microorganisms. Here, using high-speed microscopic imaging, we present direct experimental evidence that the surface scattering of both mammalian sperm cells and unicellular green algae is primarily governed by direct ciliary contact interactions. Building on this insight, we predict and experimentally verify the existence of optimal microfluidic ratchets that maximize rectification of initially uniform Chlamydomonas reinhardtii suspensions. Because mechano-elastic properties of cilia are conserved across eukaryotic species, we expect that our results apply to a wide range of swimming microorganisms.
Physical Review Letters | 2005
Sang-Hyuk Lee; Kosta Ladavac; Marco Polin; David G. Grier
We demonstrate that a cycle of three holographic optical trapping patterns can implement a thermal ratchet for diffusing colloidal spheres and that the ratchet-driven transport displays flux reversal as a function of the cycle frequency and the intertrap separation. Unlike previously described ratchet models, the approach we describe involves three equivalent states, each of which is locally and globally spatially symmetric, with spatiotemporal symmetry being broken by the sequence of states.
eLife | 2014
Douglas R. Brumley; Kirsty Y. Wan; Marco Polin; Raymond E. Goldstein
Flows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory. At close spacings it produces robust synchrony for thousands of beats, while at increasing separations synchrony is degraded by stochastic processes. Manipulation of the relative flagellar orientation reveals in-phase and antiphase states, consistent with dynamical theories. Flagellar tracking with exquisite precision reveals waveform changes that result from hydrodynamic coupling. This study proves unequivocally that flagella coupled solely through a fluid can achieve robust synchrony despite differences in their intrinsic properties. DOI: http://dx.doi.org/10.7554/eLife.02750.001
Physical Review E | 2007
Marco Polin; David G. Grier; Yilong Han
Like-charged colloidal spheres dispersed in de-ionized water are supposed to repel each other. Instead, artifact-corrected video microscopy measurements reveal an anomalous long-ranged like-charge attraction in the interparticle pair potential when the spheres are confined to a layer by even a single-charged glass surface. These attractions can be masked by electrostatic repulsions at low ionic strengths. Coating the bounding surfaces with a conducting gold layer suppresses the attraction. These observations suggest a possible mechanism for the anomalous confinement-induced attractions.
Physical Review Letters | 2013
Kyriacos C. Leptos; Kirsty Y. Wan; Marco Polin; Idan Tuval; Adriana I. Pesci; Raymond E. Goldstein
Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-phase beating in a low-Reynolds number version of breaststroke swimming. We report the discovery that ptx1, a flagellar-dominance mutant of C. reinhardtii, can exhibit synchronization in precise antiphase, as in the freestyle swimming stroke. High-speed imaging shows that ptx1 flagella switch stochastically between in-phase and antiphase states, and that the latter has a distinct waveform and significantly higher frequency, both of which are strikingly similar to those found during phase slips that stochastically interrupt in-phase beating of the wild-type. Possible mechanisms underlying these observations are discussed.
Physical Review Letters | 2015
Matteo Contino; Enkeleida Lushi; Idan Tuval; Vasily Kantsler; Marco Polin
Interactions between microorganisms and solid boundaries play an important role in biological processes, such as egg fertilization, biofilm formation, and soil colonization, where microswimmers move within a structured environment. Despite recent efforts to understand their origin, it is not clear whether these interactions can be understood as being fundamentally of hydrodynamic origin or hinging on the swimmers direct contact with the obstacle. Using a combination of experiments and simulations, here we study in detail the interaction of the biflagellate green alga Chlamydomonas reinhardtii, widely used as a model puller microorganism, with convex obstacles, a geometry ideally suited to highlight the different roles of steric and hydrodynamic effects. Our results reveal that both kinds of forces are crucial for the correct description of the interaction of this class of flagellated microorganisms with boundaries.
European Physical Journal-special Topics | 2016
Raphaël Jeanneret; Matteo Contino; Marco Polin
Abstract The unicellular biflagellate green alga Chlamydomonas reinhardtii has been an important model system in biology for decades, and in recent years it has started to attract growing attention also within the biophysics community. Here we provide a concise review of some of the aspects of Chlamydomonas biology and biophysics most immediately relevant to physicists that might be interested in starting to work with this versatile microorganism.
Physical Review Letters | 2007
Youjin Deng; Timothy M. Garoni; Jonathan Machta; Giovanni Ossola; Marco Polin; Alan D. Sokal
We study the dynamic critical behavior of the Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang dynamics for the q-state Potts model to noninteger q, in two and three spatial dimensions, by Monte Carlo simulation. We show that the Li-Sokal bound z >or= alpha/nu is close to but probably not sharp in d = 2 and is far from sharp in d = 3, for all q. The conjecture z >or= beta/nu is false (for some values of q) in both d = 2 and d = 3.
Physical Review Fluids | 2016
Brumley; Nicolas Bruot; Jurij Kotar; Raymond E. Goldstein; Pietro Cicuta; Marco Polin
Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.
Journal of Statistical Physics | 2011
Timothy M. Garoni; Giovanni Ossola; Marco Polin; Alan D. Sokal
We study, via Monte Carlo simulation, the dynamic critical behavior of the Chayes–Machta dynamics for the Fortuin–Kasteleyn random-cluster model, which generalizes the Swendsen–Wang dynamics for the q-state Potts ferromagnet to non-integer q≥1. We consider spatial dimension d=2 and 1.25≤q≤4 in steps of 0.25, on lattices up to 10242, and obtain estimates for the dynamic critical exponent zCM. We present evidence that when 1≤q≲1.95 the Ossola–Sokal conjecture zCM≥β/ν is violated, though we also present plausible fits compatible with this conjecture. We show that the Li–Sokal bound zCM≥α/ν is close to being sharp over the entire range 1≤q≤4, but is probably non-sharp by a power. As a byproduct of our work, we also obtain evidence concerning the corrections to scaling in static observables.