Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Romoli is active.

Publication


Featured researches published by Marco Romoli.


The Astrophysical Journal | 1998

UVCS/SOHO Empirical Determinations of Anisotropic Velocity Distributions in the Solar Corona

John L. Kohl; G. Noci; E. Antonucci; G. Tondello; M. C. E. Huber; Steven R. Cranmer; Leonard Strachan; Alexander V. Panasyuk; L. D. Gardner; Marco Romoli; Silvano Fineschi; Danuta Dobrzycka; John C. Raymond; P. Nicolosi; O. H. W. Siegmund; D. Spadaro; C. Benna; A. Ciaravella; S. Giordano; Shadia Rifai Habbal; Margarita Karovska; Xing Li; Richard P. Martin; J. Michels; A. Modigliani; Giampiero Naletto; R. O'Neal; C. Pernechele; G. Poletto; P. L. Smith

We present a self-consistent empirical model for several plasma parameters of a polar coronal hole near solar minimum, derived from observations with the Solar and Heliospheric Observatory Ultraviolet Coronagraph Spectrometer. The model describes the radial distribution of density for electrons, H0, and O5 + and the outflow velocity and unresolved most probable velocities for H0 and O5 + during the period between 1996 November and 1997 April. In this Letter, we compare observations of H I Lyα and O VI λλ1032, 1037 emission lines with spatial models of the plasma parameters, and we iterate for optimal consistency between measured and synthesized observable quantities. The unexpectedly large line widths of H0 atoms and O5 + ions at most radii are the result of anisotropic velocity distributions, which are not consistent with purely thermal motions or the expected motions from a combination of thermal and transverse wave velocities. Above 2 R, the observed transverse, most probable speeds for O5 + are significantly larger than the corresponding motions for H0, and the outflow velocities of O5 + are also significantly larger than the corresponding velocities of H0. We discuss the constraints and implications on various theoretical models of coronal heating and acceleration.


The Astrophysical Journal | 1999

An Empirical Model of a Polar Coronal Hole at Solar Minimum

Steven R. Cranmer; John L. Kohl; G. Noci; E. Antonucci; G. Tondello; M. C. E. Huber; Leonard Strachan; Alexander V. Panasyuk; L. D. Gardner; Marco Romoli; Silvano Fineschi; Danuta Dobrzycka; John C. Raymond; P. Nicolosi; O. H. W. Siegmund; D. Spadaro; C. Benna; A. Ciaravella; S. Giordano; Shadia Rifai Habbal; Margarita Karovska; Xing Li; Richard M. Martin; J. Michels; A. Modigliani; Giampiero Naletto; R. O'Neal; C. Pernechele; G. Poletto; P. L. Smith

We present a comprehensive and self-consistent empirical model for several plasma parameters in the extended solar corona above a polar coronal hole. The model is derived from observations with the SOHO Ultraviolet Coronagraph Spectrometer (UVCS/SOHO) during the period between 1996 November and 1997 April. We compare observations of H I Lyα and O VI λλ1032, 1037 emission lines with detailed three-dimensional models of the plasma parameters and iterate for optimal consistency between measured and synthesized observable quantities. Empirical constraints are obtained for the radial and latitudinal distribution of density for electrons, H0, and O5+, as well as the outflow velocity and unresolved anisotropic most probable speeds for H0 and O5+. The electron density measured by UVCS/SOHO is consistent with previous solar minimum determinations of the white-light coronal structure; we also perform a statistical analysis of the distribution of polar plumes using a long time series. From the emission lines we find that the unexpectedly large line widths of H0 atoms and O5+ ions at most heights are the result of anisotropic velocity distributions. These distributions are not consistent with purely thermal motions or the expected motions from a combination of thermal and transverse wave velocities. Above 2 R☉, the observed transverse most probable speeds for O5+ are significantly larger than the corresponding motions for H0, and the outflow velocities of O5+ are also significantly larger than the corresponding velocities of H0. Also, the latitudinal dependence of intensity constrains the geometry of the wind velocity vectors, and superradial expansion is more consistent with observations than radial flow. We discuss the constraints and implications on various theoretical models of coronal heating and acceleration.


Solar Physics | 1995

The Ultraviolet Coronagraph Spectrometer for the Solar and Heliospheric Observatory

J. L. Kohl; Robert Henry Esser; L. D. Gardner; Shadia Rifai Habbal; Peter S. Daigneau; E. F. Dennis; George U. Nystrom; Alexander V. Panasyuk; J. C. Raymond; P. L. Smith; Leonard Strachan; A. A. van Ballegooijen; G. Noci; Silvano Fineschi; Marco Romoli; A. Ciaravella; A. Modigliani; M. C. E. Huber; E. Antonucci; C. Benna; S. Giordano; G. Tondello; P. Nicolosi; Giampiero Naletto; C. Pernechele; D. Spadaro; G. Poletto; S. Livi; O. von der Lühe; J. Geiss

The SOHO Ultraviolet Coronagraph Spectrometer (UVCS/SOHO) is composed of three reflecting telescopes with external and internal occultation and a spectrometer assembly consisting of two toric grating spectrometers and a visible light polarimeter. The purpose of the UVCS instrument is to provide a body of data that can be used to address a broad range of scientific questions regarding the nature of the solar corona and the generation of the solar wind. The primary scientific goals are the following: to locate and characterize the coronal source regions of the solar wind, to identify and understand the dominant physical processes that accelerate the solar wind, to understand how the coronal plasma is heated in solar wind acceleration regions, and to increase the knowledge of coronal phenomena that control the physical properties of the solar wind as determined by in situ measurements. To progress toward these goals, the UVCS will perform ultraviolet spectroscopy and visible polarimetry to be combined with plasma diagnostic analysis techniques to provide detailed empirical descriptions of the extended solar corona from the coronal base to a heliocentric height of 12 solar radii.


The Astrophysical Journal | 1997

ULTRAVIOLET CORONAGRAPH SPECTROMETER OBSERVATIONS OF DENSITY FLUCTUATIONS IN THE SOLAR WIND

Leon Ofman; Marco Romoli; G. Poletto; G. Noci; John L. Kohl

Recent Ultraviolet Coronagraph Spectrometer (UVCS) white-light channel (WLC) observations on board the Solar and Heliospheric Observatory (SOHO) indicate quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes. This is the first observation of possible signatures of compressional waves high above the limb (at heliocentric distances in the range 1.9-2.45 R☉). The Fourier power spectrum of the pB time series at 1.9 R☉ shows significant peak at about 6 minutes and possible fluctuations on longer timescales (20-50 minutes). The observation at 1.9 R☉ is the only currently available WLC data set with sufficient cadence to resolve the 6 minute period. These preliminary observations may result from density fluctuations caused by compressional waves propagating in polar coronal holes. We stress that our results are preliminary, and we plan future high-cadence observations in both plume and interplume regions of coronal holes. Recently, Ofman & Davila used a 2.5 D MHD model and found that Alfven waves with an amplitude of 20-70 km s-1 at the base of the coronal hole can generate nonlinear, high-amplitude compressional waves that can contribute significantly to the acceleration of the fast solar wind. The nonlinear solitary-like waves appear as fluctuations in the density and the radial outflow velocity and contribute significantly to solar wind acceleration in open magnetic field structures. The motivation for the reported observations is the MHD model prediction.


Solar Physics | 1997

First Results from the SOHO Ultraviolet Coronagraph Spectrometer

John L. Kohl; G. Noci; E. Antonucci; G. Tondello; M. C. E. Huber; L. D. Gardner; P. Nicolosi; Leonard Strachan; Silvano Fineschi; John C. Raymond; Marco Romoli; D. Spadaro; Alexander V. Panasyuk; O. H. W. Siegmund; C. Benna; A. Ciaravella; Steven R. Cranmer; S. Giordano; Margarita Karovska; Richard P. Martin; J. Michels; A. Modigliani; Giampiero Naletto; Claudio Pernechele; G. Poletto; P. L. Smith

The SOHO Ultraviolet Coronagraph Spectrometer (UYCS/SOHO) is being used to observe the extended solar corona from 1.25 to 10 R from Sun center. Initial observations of polar coronal holes and equatorial streamers are described. The observations include measurements of spectral line profiles for H I Lα and Lβ, O VI 1032 A and 1037 A, Mg × 625 A, Fe XII 1242 A and several others. Intensities for Mg × 610 A, Si XII 499 A, and 520 A, S × 1196 A, and 22 others have been observed. Preliminary results for derived H0, O5+, Mg9+, and Fe11+ velocity distributions and initial indications of outflow velocities for O5+ are described. In streamers, the H0 velocity distribution along the line of sight (specified by the value at e-1, along the line of sight) decreases from a maximum value of about 180 km s-1 at 2 R to about 140 km s-1 at 8 R. The value for O5+ increases with height reaching a value of 150 km s-1 at 4.7 R. In polar coronal holes, the O5+ velocity at e-1 is atout equal to that of H0 at 1.7 R and significantly larger at 2.1 R. The O5+ in both streamers and coronal holes were found to have amsotropic velocity distributions with the smaller values in the radial direction.


The Astrophysical Journal | 2000

UVCS WLC OBSERVATIONS OF COMPRESSIONAL WAVES IN THE SOUTH POLAR CORONAL HOLE

Leon Ofman; Marco Romoli; G. Poletto; G. Noci; John L. Kohl

Recent SOHO Ultraviolet Coronagraph Spectrometer (UVCS) white light channel (WLC) observations of the south polar coronal hole plumes and interplume regions produce signatures of quasi-periodic variations in the polarized brightness (pB) at a heliocentric distance of 1.9 solar radii (R☉). The Fourier power spectrum of the pB time series shows significant peaks at about 1.6-2.5 mHz and additional smaller peaks at longer and shorter timescales. Wavelet analysis of the pB time series shows that the coherence time of the fluctuations is about 30 minutes. The new observations strongly suggest that the fluctuations are compressional wave packets propagating in the coronal hole high above the limb. The presence of compressional waves may have important implications that help to explain the heating of coronal holes and the fast solar wind acceleration.


Geophysical Research Letters | 2000

SOHO and radio observations of a CME shock wave

John C. Raymond; B. J. Thompson; O. C. St. Cyr; Nat Gopalswamy; S. W. Kahler; Michael L. Kaiser; A. Lara; A. Ciaravella; Marco Romoli; R. O'Neal

A 1200 km s−1 Coronal Mass Ejection was observed with the SOHO instruments EIT, LASCO and UVCS on June 11, 1998. Simultaneously, Type II radio bursts were observed with the WAVES experiment aboard the Wind spacecraft at 4 MHz and by ground-based instruments at metric wavelengths. The density in the shock wave implied by the higher frequency is close to that inferred from the SOHO/UVCS experiment. The drift rates of the Type II radio bursts suggest shock speeds lower than the speed derived from SOHO observations. The SOHO/UVCS spectrum shows enhanced emission in lines of O5+ and Si11+, consistent with modest compression in an MHD shock.


The Astrophysical Journal | 1998

Physical Structure of a Coronal Streamer in the Closed-Field Region as Observed from UVCS/SOHO and SXT/Yohkoh

J. Li; John C. Raymond; Loren W. Acton; John L. Kohl; Marco Romoli; G. Noci; Giampiero Naletto

We analyze a coronal helmet streamer observed on 1996 July 25 using instruments aboard two solar spacecraft, the Ultraviolet Coronagraph Spectrometer (UVCS) on board Solar and Heliospheric Observatory (SOHO) and the Soft X-Ray Telescope (SXT) on board Yohkoh. We derive temperatures and electron densities at 1.15 R☉ from SXT/Yohkoh observations. At this height, the streamer temperature is about log T (K) = 6.28 ± 0.05, and the electron density is about log ne(cm-3) = 8.09 ± 0.26, while at 1.5 R☉ a temperature of log T (K) = 6.2 and a density of log ne(cm-3) = 7.1 are obtained by UVCS/SOHO. Within the measurement uncertainty this suggests a constant temperature from the base of the streamer to 1.5 R☉. Electron density measurements suggest that the gas in the streamer core is close to hydrostatic equilibrium. Comparison with potential field models for the magnetic field suggests a plasma β larger than 1 in the closed-field region in the streamer. In deriving electron densities and temperatures from the SXT/Yohkoh data, we include the effects of abundance anomalies on the SXT filter response. We use the elemental abundances derived from the UVCS/SOHO observations to estimate the first ionization potential and gravitational settling effects. We then give the set of abundances for the solar corona, which agrees with our observations. In addition, we analyzed the SXT data from 6 consecutive days. We found that from 1996 July 22 to July 27, the physical properties of the streamer are nearly constant. We conclude that we may be observing the same loop system over 6 days.


The Astrophysical Journal | 2000

Identification of the Coronal Sources of the Fast Solar Wind.

S. Giordano; E. Antonucci; G. Noci; Marco Romoli; John L. Kohl

The present spectroscopic study of the ultraviolet coronal emission in a polar hole, detected on 1996 April 6-9 with the Ultraviolet Coronagraph Spectrometer aboard the Solar and Heliospheric Observatory spacecraft, identifies the interplume lanes and background coronal hole regions as the channels in which the fast solar wind is preferentially accelerated. In interplume lanes, at heliocentric distance 1.7 R middle dot in circle, the corona expands at a rate between 105 and 150 km s-1, that is, much faster than in plumes in which the outflow velocity is between 0 and 65 km s-1. The wind velocity is inferred from the Doppler dimming of the O vi lambdalambda1032, 1037 lines, within a range of values, whose lower and upper limit corresponds to anisotropic and isotropic velocity distribution of the oxygen coronal ions, respectively.


Advances in Space Research | 1997

First results from UVCS/SOHO

G. Noci; John L. Kohl; E. Antonucci; G. Tondello; M. C. E. Huber; Silvano Fineschi; L. D. Gardner; Giampiero Naletto; P. Nicolosi; John C. Raymond; Marco Romoli; D. Spadaro; O. H. W. Siegmund; Carlo Benna; A. Ciaravella; S. Giordano; J. Michels; A. Modigliani; Alexander V. Panasyuk; C. Pernechele; G. Poletto; P. L. Smith; Leonard Strachan

Abstract We present here the first results obtained by the Ultraviolet Coronagraph Spectrometer (UVCS) operating on board the SOHO satellite. The UVCS started to observe the extended corona at the end of January 1996; it routinely obtains coronal spectra in the 1145 A – 1287 A, 984 A – 1080 A ranges, and intensity data in the visible continuum. Through the composition of slit images it also produces monocromatic images of the extended corona. The performance of the instrument is excellent and the data obtained up to now are of great interest. We briefly describe preliminary results concerning polar coronal holes, streamers and a coronal mass ejection, in particular: the very large r.m.s. velocities of ions in polar holes (hundreds km/sec for OVI and MgX); the puzzling difference between the HI Ly-α image and that in the OVI resonance doublet, for most streamers; the different signatures of the core and external layers of the streamers in the width of the ion lines and in the OVI doublet ratio, indicating larger line-of-sight (l.o.s.) and outflow velocities in the latter.

Collaboration


Dive into the Marco Romoli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Noci

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge