Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Rosetti is active.

Publication


Featured researches published by Marco Rosetti.


Journal of Translational Medicine | 2005

In vitro and in vivo evaluation of NCX 4040 cytotoxic activity in human colon cancer cell lines

Anna Tesei; Paola Ulivi; Francesco Fabbri; Marco Rosetti; Carlo Leonetti; Marco Scarsella; Gabriella Zupi; Dino Amadori; Manlio Bolla; Wainer Zoli

BackgroundNitric oxide-releasing nonsteroidal antiinflammatory drugs (NO-NSAIDs) are reported to be safer than NSAIDs because of their lower gastric toxicity. We compared the effect of a novel NO-releasing derivate, NCX 4040, with that of aspirin and its denitrated analog, NCX 4042, in in vitro and in vivo human colon cancer models and investigated the mechanisms of action underlying its antitumor activity.MethodsIn vitro cytotoxicity was evaluated on a panel of colon cancer lines (LoVo, LoVo Dx, WiDr and LRWZ) by sulforhodamine B assay. Cell cycle perturbations and apoptosis were evaluated by flow cytometry. Protein expression was detected by Western blot. In the in vivo experiments, tumor-bearing mice were treated with NCX 4040, five times a week, for six consecutive weeks.ResultsIn the in vitro studies, aspirin and NCX 4042 did not induce an effect on any of the cell lines, whereas NCX 4040 produced a marked cytostatic dose-related effect, indicating a pivotal role of the -NO2 group. Furthermore, in LoVo and LRWZ cell lines, we observed caspase-9 and -3-mediated apoptosis, whereas no apoptotic effect was observed after drug exposure in WiDr or LoVo Dx cell lines. In in vivo studies, both NCX 4040 and its parental compound were administered per os. NCX 4040 induced a 40% reduction in tumor weight. Conversely, aspirin did not influence tumor growth at all.ConclusionsNCX 4040, but not its parental compound, aspirin, showed an in vitro and in vivo antiproliferative activity, indicating its potential usefulness to treat colon cancer.


Journal of Cellular Physiology | 2006

p16INK4A and CDH13 hypermethylation in tumor and serum of non-small cell lung cancer patients

Paola Ulivi; Wainer Zoli; Daniele Calistri; Francesco Fabbri; Anna Tesei; Marco Rosetti; Marta Mengozzi; Dino Amadori

Aberrant promoter hypermethylation of several known or putative tumor suppressor genes occurs frequently during the etiopathogenesis of lung cancer and is a promising tool for cancer detection. In the present study, promoter hypermethylation of p16INK4A and CDH13 genes was investigated in tumor tissue and in matched serum from 61 patients with histologically confirmed non‐small cell lung cancer. Using a fluorescence‐based method of methylation‐specific PCR (F‐MSP), methylation of p16INK4A and CDH13 was detected in 79% and 66% of tumors, respectively, and was not significantly related to conventional clinicopathological characteristics of patients or tumors. Methylation of both genes was observed in 52% of tumors and of at least one gene in 92% of lesions. In matched serum, hypermethylation of p16INK4A and CDH13 was observed in 26% and 23% of patients, respectively, but as they were not associated, the methylation of at least one gene was detected in 39% of patients. In conclusion, the frequency of p16INK4A or CDH13 hypermethylation in patient serum, together with evidence of their early occurrence in lung cancerogenesis and the total lack of methylation in serum from healthy individuals, offer a promising tool for non invasive early detection of lung cancer.


Breast Cancer Research | 2005

Addition of 5-fluorouracil to doxorubicin-paclitaxel sequence increases caspase-dependent apoptosis in breast cancer cell lines

Wainer Zoli; Paola Ulivi; Anna Tesei; Francesco Fabbri; Marco Rosetti; Roberta Maltoni; Donata Casadei Giunchi; Luca Ricotti; Giovanni Brigliadori; Ivan Vannini; Dino Amadori

IntroductionThe aim of the study was to evaluate the activity of a combination of doxorubicin (Dox), paclitaxel (Pacl) and 5-fluorouracil (5-FU), to define the most effective schedule, and to investigate the mechanisms of action in human breast cancer cells.MethodsThe study was performed on MCF-7 and BRC-230 cell lines. The cytotoxic activity was evaluated by sulphorhodamine B assay and the type of drug interaction was assessed by the median effect principle. Cell cycle perturbation and apoptosis were evaluated by flow cytometry, and apoptosis-related marker (p53, bcl-2, bax, p21), caspase and thymidylate synthase (TS) expression were assessed by western blot.Results5-FU, used as a single agent, exerted a low cytotoxic activity in both cell lines. The Dox→Pacl sequence produced a synergistic cytocidal effect and enhanced the efficacy of subsequent exposure to 5-FU in both cell lines. Specifically, the Dox→Pacl sequence blocked cells in the G2-M phase, and the addition of 5-FU forced the cells to progress through the cell cycle or killed them. Furthermore, Dox→Pacl pretreatment produced a significant reduction in basal TS expression in both cell lines, probably favoring the increase in 5-FU activity. The sequence Dox→Pacl→48-h washout→5-FU produced a synergistic and highly schedule-dependent interaction (combination index < 1), resulting in an induction of apoptosis in both experimental models regardless of hormonal, p53, bcl-2 or bax status. Apoptosis in MCF-7 cells was induced through caspase-9 activation and anti-apoptosis-inducing factor hyperexpression. In the BRC-230 cell line, the apoptotic process was triggered only by a caspase-dependent mechanism. In particular, at the end of the three-drug treatment, caspase-8 activation triggered downstream executioner caspase-3 and, to a lesser degree, caspase-7.ConclusionIn our experimental models, characterized by different biomolecular profiles representing the different biology of human breast cancers, the schedule Dox→Pacl→48-h washout→5-FU was highly active and schedule-dependent and has recently been used to plan a phase I/II clinical protocol.


Journal of Cellular Physiology | 2008

Mitotic catastrophe and apoptosis induced by docetaxel in hormone-refractory prostate cancer cells.

Francesco Fabbri; Dino Amadori; Silvia Carloni; Giovanni Brigliadori; Anna Tesei; Paola Ulivi; Marco Rosetti; Ivan Vannini; Chiara Arienti; Wainer Zoli; Rosella Silvestrini

Studies performed in different experimental and clinical settings have shown that Docetaxel (Doc) is effective in a wide range of tumors and that it exerts its activity through multiple mechanisms of action. However, the sequence of events induced by Doc which leads to cell death is still not fully understood. Moreover, it is not completely clear how Doc induces mitotic catastrophe and whether this process is an end event or followed by apoptosis or necrosis. We investigated the mechanisms by which Doc triggers cell death in hormone‐refractory prostate cancer cells by analyzing cell cycle perturbations, apoptosis‐related marker expression, and morphologic cell alterations. Doc induced a transient increase in G2/M phase followed by the appearance of G0/1 hypo‐ and hyperdiploid cells and increased p21 expression. Time‐ and concentration‐dependent apoptosis was induced in up to 70% of cells, in concomitance with Bcl‐2 phosphorylation, which was followed by caspase‐2 and ‐3 activation. In conclusion, Doc would seem to trigger apoptosis in hormone‐refractory prostate cancer cells via mitotic catastrophe through two forms of mitotic exit, in concomitance with increased p21 expression and caspase‐2 activation. J. Cell. Physiol. 217: 494–501, 2008.


Cell Proliferation | 2009

Isolation of stem/progenitor cells from normal lung tissue of adult humans.

Anna Tesei; Wainer Zoli; Arienti C; Gianluca Storci; Granato Am; Gianandrea Pasquinelli; Sabrina Valente; Catia Orrico; Marco Rosetti; Ivan Vannini; Dubini A; Dell'Amore D; Dino Amadori; Massimiliano Bonafè

Objectives:  This study aimed to isolate and characterize stem/progenitor cells, starting from normal airway epithelia, obtained from human adults.


Molecular Cancer Therapeutics | 2006

Efficacy of a nitric oxide–releasing nonsteroidal anti-inflammatory drug and cytotoxic drugs in human colon cancer cell lines in vitro and xenografts

Carlo Leonetti; Marco Scarsella; Gabriella Zupi; Wainer Zoli; Dino Amadori; Laura Medri; Francesco Fabbri; Marco Rosetti; Paola Ulivi; Lorenzo Cecconetto; Manlio Bolla; Anna Tesei

We previously showed that NCX 4040 inhibits in vitro and in vivo tumor growth and induces apoptosis in human colon cancer cell lines. On the basis of these results, NCX 4040 antitumor activity in combination with 5-fluorouracil (5-FU) or oxaliplatin was evaluated in vitro and in vivo in human colon cancer models. The cytotoxicity of different NCX 4040 and 5-FU or oxaliplatin combination schemes was evaluated on a panel of colon cancer lines (LoVo, LoVo Dx, WiDr, and LRWZ) by the sulforhodamine B assay, and apoptosis was assessed by flow cytometry. NCX 4040 and 5-FU combination was always additive in vitro regardless of the scheme used. Sequential NCX 4040→oxaliplatin treatment produced a strong synergism in three cell lines, with a ratio index ranging from 3.7 to 4. The synergistic effect was accompanied by apoptosis induction (up to 40%). In the in vivo experiments, xenografted mice were treated with the sequential combination of NCX 4040 and oxaliplatin, and apoptosis was evaluated immunohistochemically in excised tumors. Furthermore, in WiDr xenografts, this sequence caused a significantly higher reduction (∼60%) in tumor growth compared with single-drug treatments and produced extensive apoptotic cell death (15.3%), significantly higher (P < 0.01) than that observed in untreated tumors (2.7%) or in tumors treated with NCX 4040 (5.1%) or oxaliplatin (5.7%) alone. These data show that NCX 4040 sensitizes colon cancer cell lines to the effect of antitumor drugs and suggests that their combination could be useful for the clinical management of colon cancer. [Mol Cancer Ther 2006;5(4):919–26]


Apoptosis | 2005

Pro-apoptotic effect of a nitric oxide-donating NSAID, NCX 4040, on bladder carcinoma cells

Francesco Fabbri; Giovanni Brigliadori; Paola Ulivi; Anna Tesei; Ivan Vannini; Marco Rosetti; S. Bravaccini; Dino Amadori; Manlio Bolla; Wainer Zoli

Nitric oxide-releasing non steroidal anti-inflammatory drugs (NO-NSAIDs) are a promising class of compounds that cause cell cycle perturbations and induce apoptosis in cell lines from different tumors. We investigated the activity of a recently developed NO-NSAID (NCX 4040) in bladder cancer cell lines (HT1376 and MCR). Cells were treated with different drug concentrations for different exposure times. Cytostatic and cytocidal activity was tested by SRB assay and apoptosis was evaluated by TUNEL analysis, ANNEXIN V assay and fluorescence microscopy. To further investigate the cell death-inducing mechanisms of NCX 4040, we analyzed gp-170, caspase expression and mitochondrial membrane potential (Δ Ψ) depolarization. NCX 4040 showed a striking cytocidal activity in both cell lines, reaching LC50 at a 10-μ M and 50-μ M concentrations in HT1376 and in MCR cells, respectively, after an exposure of only 6 h followed by an 18-h washout. Apoptosis was triggered in up to 90% of cells and was associated with active caspase-3 expression and Δ Ψ depolarization in both cell lines after a 6-h exposure. In conclusion, NCX 4040, which probably causes apoptosis via a mitochondrial-dependent mechanism, could prove to be a useful agent for improving bladder cancer treatment.


Nitric Oxide | 2008

NCX 4040, an NO-donating acetylsalicylic acid derivative: Efficacy and mechanisms of action in cancer cells

Anna Tesei; Wainer Zoli; Francesco Fabbri; Carlo Leonetti; Marco Rosetti; Manlio Bolla; Dino Amadori; Rosella Silvestrini

Non-steroidal anti-inflammatory drugs (NSAIDs) have repeatedly shown to be effective in tumor prevention, but important side-effects limit their wide clinical use. Nitric oxide-releasing derivatives (NO-NSAIDs) are a promising class of compounds synthesized by combining a classic NSAID molecule with an NO-releasing moiety to counteract side-effects. These new chemical entities exhibit a significantly higher activity and much lower toxicity with respect to the parental drug. In the present paper, we report the results obtained from in in vitro experimental systems aimed to evaluate the activity and mechanisms of action of the novel NO-releasing aspirin derivative, NCX 4040. The in vitro studies were carried out on a panel of human colon (LoVo, LoVo Dx, WiDr, LRWZ), bladder (HT1376, MCR), and pancreatic (Capan-2, MIA PaCa-2, T3M4) cancer cell lines. With regard to colon cancer, NCX 4040 activity was also investigated in vitro in combination with drugs currently used in clinical practice and was validated in vivo on tumor-bearing mice xenografted with the aforementioned colon cancer cell lines. The in vitro studies showed a high cytotoxic activity of NCX 4040 in all tumor histotypes and demonstrated the pivotal role of the NO component in drug activity. It was also observed that NCX 4040 exerts a pro-apoptotic activity via a mitochondria-dependent pathway. Moreover, the in vivo studies on xenografted mice further confirmed the antitumor efficacy and low toxicity of NCX 4040 in colon cancer and highlighted its role as sensitizing agent of oxaliplatin cytotoxicity.


Analytical Cellular Pathology | 2007

Short interfering RNA directed against the SLUG gene increases cell death induction in human melanoma cell lines exposed to cisplatin and fotemustine

Ivan Vannini; Massimiliano Bonafè; Anna Tesei; Marco Rosetti; Francesco Fabbri; Gianluca Storci; Paola Ulivi; Giovanni Brigliadori; Dino Amadori; Wainer Zoli

Background: Melanoma remains largely resistant to currently available chemotherapy, and new strategies have been proposed to flank standardized therapeutic protocols in an effort to improve efficacy. Such an approach requires good knowledge of the mechanisms involved in the resistance and survival of melanoma cells. In this context, the SLUG gene has recently been characterized as a major regulator of melanocytes and melanoma cell survival. Methods: We tested the hypothesis that an oligonucleotide-based short interfering RNA (siRNA) directed against the SLUG gene increases the susceptibility of melanoma cells to drugs such as cisplatin and fotemustine, which are frequently used to treat this cancer. Results: It was found that SLUG siRNA increased cisplatin-induced cell death and rendered the drug active in vitro at half its plasmatic peak concentration. Such activity was correlated with an upregulation of the pro-apoptotic gene, PUMA. Furthermore, SLUG siRNA increased the capacity of fotemustine to elicit cell death and induced p21WAF1 upregulation, resulting in cell cycle arrest. Interestingly, this pathway did not require functional p53. Conclusion: These findings suggest that SLUG siRNA enhances the efficacy of two of the most widely used drugs to treat melanoma.


Tumor Biology | 2008

Role of p53 Codon 72 Arginine Allele in Cell Survival in vitro and in the Clinical Outcome of Patients with Advanced Breast Cancer

Ivan Vannini; Wainer Zoli; Anna Tesei; Marco Rosetti; Pasquale Sansone; Gianluca Storci; A. Passardi; I. Massa; M. Ricci; D. Gusolfino; Francesco Fabbri; Paola Ulivi; Giovanni Brigliadori; Dino Amadori; Massimiliano Bonafè

Background: The p53 codon 72 polymorphism, which results in either an arginine or proline residue, plays a different role in vitro and in vivo in cell survival and drug resistance. We verified, in vitro, the impact of the arginine allele on cell survival under normoxia and hypoxia, and investigated in vivo the role of p53 codon 72 arginine homozygosity in the clinical outcome of advanced breast cancer patients. Methods: Tumors at advanced stages grow in vivo in a hypoxic environment, and we mimicked such conditions in vitro using p53 null breast cancer cells transfected with either the arginine or proline allele. We also analyzed in vivo the p53 codon 72 genotype status of advanced breast cancer patients. Results: In vitro transfection of the arginine allele induced higher cell death under normoxia, whereas cell death was greater in proline-transfected cells under hypoxia. The arginine allele upregulated BCRP-I, a hypoxia response gene, which increases drug resistance. Metastatic breast cancer patients homozygous for arginine had a significantly shorter time to progression and overall survival than those with heterozygous arginine/proline tumors. Conclusion: We provide a molecular explanation for the association of the arginine allele with tumor aggressiveness and treatment resistance in advanced breast cancer.

Collaboration


Dive into the Marco Rosetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Leonetti

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Rosella Silvestrini

European Organisation for Research and Treatment of Cancer

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Scarsella

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Gabriella Zupi

École normale supérieure de Lyon

View shared research outputs
Researchain Logo
Decentralizing Knowledge