Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Rusnati is active.

Publication


Featured researches published by Marco Rusnati.


Journal of Biological Chemistry | 1997

Interaction of HIV-1 Tat Protein with Heparin ROLE OF THE BACKBONE STRUCTURE, SULFATION, AND SIZE

Marco Rusnati; Daniela Coltrini; Pasqua Oreste; Giorgio Zoppetti; Adriana Albini; Douglas M. Noonan; Fabrizio d'Adda di Fagagna; Mauro Giacca; Marco Presta

Human immunodeficiency virus type 1 (HIV-1) Tat protein is released from infected cells. Extracellular Tat enters the cell where it stimulates the transcriptional activity of HIV-long terminal repeat (LTR) and of endogenous genes. Heparin modulates the angiogenic (Albini, A., Benelli, R., Presta, M., Rusnati, M., Ziche, M., Rubartelli, A., Paglialunga, G., Bussolino, F., and Noonan, D. (1996) Oncogene 12, 289-297) and transcriptional (Mann, D. A., and Frankel, A. D. (1991) EMBO J. 10, 1733-1739) activity of extracellular Tat. Here we demonstrate that heparin binds specifically to recombinant HIV-1 Tat produced as glutathione S-transferase (GST) fusion protein and immobilized on glutathione-agarose beads. Heparin and heparan sulfate (HS), but not dermatan sulfate, chondroitin sulfates A and C, hyaluronic acid, and K5 polysaccharide, competed with 3H-labeled heparin for binding to immobilized GST-Tat and inhibited HIV-LTR transactivation induced by extracellular GST-Tat. Selective 2-O-, 6-O-, total-O-desulfation, or N-desulfation/N-acetylation dramatically reduced the capacity of heparin to bind GST-Tat. Totally-O-desulfated and 2-O-desulfated heparins also showed a reduced capacity to inhibit the transactivating activity of GST-Tat. Very low molecular weight heparins showed a significant decrease in their capacity to bind GST-Tat and to inhibit its LTR transactivating activity when compared with conventional 13.6-kDa heparin. However, when 3.0-kDa heparin was affinity chromatographed on immobilized GST-Tat to isolate binding and non-binding subfractions, the Tat-bound fraction was ≥1,000 times more potent than the unbound fraction in inhibiting the transactivating activity of GST-Tat. The results demonstrate that Tat interacts in a size-dependent manner with heparin/HS and that high affinity Tat-heparin interaction requires at least some 2-O-, 6-O-, and N-positions to be sulfated. The Tat binding activity of the glycosaminoglycans tested correlates with their capacity to affect the transactivating activity of extracellular Tat, indicating the possibility to design specific heparin/HS-like structures with Tat-antagonist activity.


Journal of Cellular and Molecular Medicine | 2007

Role of the soluble pattern recognition receptor PTX3 in vascular biology

Marco Presta; Maura Camozzi; Giovanni Salvatori; Marco Rusnati

•  Introduction •  PTX3 gene and expression •  PTX3 protein structure •  PTX3 ligands •  PTX3 in vascular pathology ‐  PTX3 as a marker of vascular damage ‐  Atherosclerosis ‐  Angiogenesis ‐  Restenosis •  Concluding remarks


International Journal of Clinical & Laboratory Research | 1996

Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans : Biological implications in neovascularization

Marco Rusnati; M. Presta

Basic fibroblast growth factor is an angiogenic molecule involved in several physiological and pathological processes, including wound repair, embryonic development, and tumor growth. In vitro, basic fibroblast growth factor induces an “angiogenic phenotype” in endothelial cells, which includes chemotaxis, mitogenesis, protease production, β-integrin expression, and tube formation in three-dimensional gels. It acts by binding to specific tryosine kinase receptors and to cell-associated heparan sulfate proteoglycans. The physiological significance of the interaction with cell-associated and soluble heparan sulfate proteoglycans is manyfold. Heparan sulfate proteoglycans protect basic fibroblast growth factor from inactivation in the extracellular environment and modulate its bioavailability. At the cell surface, soluble and cell-associated heparan sulfate proteoglycans may play different roles in modulating the dimerization of the growth factor and its interaction with tyrosine kinase receptors. Finally, they affect the internalization and the intracellular fate of basic fibroblast growth factor, suggesting that growth factor slash proteoglycan complexes are involved in intracellular delivery. The bioavailability and the biological activity of basic fibroblast growth factor on endothelial cells strictly depend on the glycosaminoglycan milieu of the extracellular environment. Hence the angiogenic activity of the growth factor in vivo might be modulated by using exogenous glycosaminoglycans. The capacity of glycosaminoglycans to bind to and to influence the biological activity of basic fibroblast growth factor depends on size, degree of sulfation, and disaccharide composition. In the present paper we discuss the physiological significance and the biochemical bases of the interaction of the growth factor with heparan sulfate proteoglycans and exogenous glycosaminoglycans with a view to the possible therapeutic use of heparin-related oligosaccharides as basic fibroblast growth factor agonists or antagonists in angiogenesis-dependent diseases.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1997

Basic Fibroblast Growth Factor–Induced Angiogenic Phenotype in Mouse Endothelium: A Study of Aortic and Microvascular Endothelial Cell Lines

Bastaki M; Nelli Ee; Patrizia Dell'Era; Marco Rusnati; Molinari-Tosatti Mp; Parolini S; Auerbach R; Ruco Lp; Possati L; Marco Presta

The mouse is the most commonly used species for in vivo studies on angiogenesis related to tumor development. Yet, to the best of our knowledge, very few reports on the in vitro interaction of the angiogenic basic fibroblast growth factor (bFGF) with mouse endothelial cells are available. Three mouse endothelial cell lines originated from aorta (MAECs), brain capillaries (MBECs), and heart capillaries (MHECs) were characterized for endothelial phenotypic markers, in vivo tumorigenic activity, and the capacity to respond in vitro to bFGF. These cells express angiotensin-converting enzyme, acetylated LDL receptor, constitutive endothelial nitric oxide synthase, and vascular cell adhesion molecule-1 and bind Griffonia simplicifolia-I lectin. When injected subcutaneously in nude mice, MAECs induced the appearance of slow-growing vascular lesions reminiscent of epithelioid hemangioendothelioma, whereas MBEC xenografts grew rapidly, showing Kaposis sarcoma-like morphological features. No lesions were induced by injection of MHECs. MAECs, MBECs, and MHECs expressed both low-affinity heparan sulfate bFGF-binding sites and high-affinity tyrosine kinase receptors (FGFRs) on their surfaces. In particular, MAECs expressed FGFR-2/bek mRNA, whereas microvascular MBECs and MHECs expressed FGFR-1/flg mRNA. Accordingly, bFGF induced a mitogenic response and the phosphorylation of extracellular signal-regulated kinase-2 in all the cell lines. In contrast, upregulation of urokinase-type plasminogen activator expression was observed in bFGF-treated microvascular MBECs and MHECs but not in MAECs. Also, bFGF-treated MBECs and MHECs but not MAECs invaded a three-dimensional fibrin gel and formed hollow, capillary-like structures. The relevance of the modifications of the fibrinolytic balance of mouse microvascular endothelium in bFGF-induced angiogenesis was validated in vivo by a gelatin-sponge assay in which the plasmin inhibitors tranexamic acid and epsilon-aminocaproic acid given to mice in the drinking water inhibited neovascularization induced by the growth factor. In conclusion, differences in response to bFGF exist between large-vessel MAECs and microvascular MBECs and MHECs. Both in vitro and in vivo data point to a role of the profibrinolytic phenotype induced by bFGF in microvascular endothelial cells during mouse angiogenesis. Our observations make these endothelial cell lines suitable for further studies on mouse endothelium during angiogenesis and in angioproliferative diseases.


Journal of Biological Chemistry | 1998

The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonists.

Marco Rusnati; Giovanni Tulipano; Chiara Urbinati; Elena Tanghetti; Roberta Giuliani; Mauro Giacca; Marina Ciomei; Alfredo Corallini; Marco Presta

Heparin binds extracellular HIV-1 Tat protein and modulates its HIV long terminal repeat (LTR)-transactivating activity (M. Rusnati, D. Coltrini, P. Oreste, G. Zoppetti, A. Albini, D. Noonan, F. d’Adda di Fagagna, M. Giacca, and M. Presta (1997) J. Biol. Chem. 272, 11313–11320). On this basis, the glutathioneS-transferase (GST)-TatR49/52/53/55/56/57Amutant, in which six arginine residues within the basic domain of Tat were mutagenized to alanine residues, was compared with GST-Tat for its capacity to bind immobilized heparin. Dissociation of the GST-TatR49/52/53/55/56/57A·heparin complex occurred at ionic strength significantly lower than that required to dissociate the GST-Tat·heparin complex. Accordingly, heparin binds immobilized GST-Tat and GST-TatR49/52/53/55/56/57A with a dissociation constant equal to 0.3 and 1.0 μm, respectively. Also, the synthetic basic domain Tat-(41–60) competes with GST-Tat for heparin binding. Suramin inhibits [3H]heparin/Tat interaction,125I-GST-Tat internalization, and the LTR-transactivating activity of extracellular Tat in HL3T1 cells and prevents125I-GST-Tat binding and cell proliferation in Tat-overexpressing T53 cells. The suramin derivative14C-PNU 145156E binds immobilized GST-Tat with a dissociation constant 5 times higher than heparin and is unable to bind GST-TatR49/52/53/55/56/57A. Although heparin was an antagonist more potent than suramin, modifications of the backbone structure in selected suramin derivatives originated Tat antagonists whose potency was close to that shown by heparin. In conclusion, suramin derivatives bind the basic domain of Tat, prevent Tat/heparin and Tat/cell surface interactions, and inhibit the biological activity of extracellular Tat. Our data demonstrate that tailored polysulfonated compounds represent potent extracellular Tat inhibitors of possible therapeutic value.


Journal of Immunology | 2005

Cutting Edge: Proangiogenic Properties of Alternatively Activated Dendritic Cells

Elena Riboldi; Tiziana Musso; Emanuela Moroni; Chiara Urbinati; S. Bernasconi; Marco Rusnati; Luciano Adorini; Marco Presta; Silvano Sozzani

Angiogenesis plays an important role in tissue remodeling and repair during the late phase of inflammation. In the present study, we show that human dendritic cells (DC) that matured in the presence of anti-inflammatory molecules such as calcitriol, PGE2, or IL-10 (alternatively activated DC) selectively secrete the potent angiogenic cytokine vascular endothelial growth factor (VEGF) isoforms VEGF165 and VEGF121. No VEGF production was observed in immature or classically activated DC. Also, the capacity to produce VEGF was restricted to the myeloid DC subset. When implanted in the chick embryo chorioallantoic membrane, alternatively activated DC elicit a marked angiogenic response, which is inhibited by neutralizing anti-VEGF Abs and by the VEGFR-2 inhibitor SU5416. Therefore, alternatively activated DC may contribute to the resolution of the inflammatory reaction by promoting VEGF-induced angiogenesis.


Journal of Biological Chemistry | 1999

Multiple Interactions of HIV-I Tat Protein with Size-defined Heparin Oligosaccharides

Marco Rusnati; Giovanni Tulipano; Dorothe Spillmann; Elena Tanghetti; Pasqua Oreste; Giorgio Zoppetti; Mauro Giacca; Marco Presta

Tat protein, a transactivating factor of the human immunodeficiency virus type I, acts also as an extracellular molecule. Heparin affects the bioavailability and biological activity of extracellular Tat (Rusnati, M., Coltrini, D., Oreste, P., Zoppetti, G., Albini, A., Noonan, D., D’Adda di Fagagna, F., Giacca, M., and Presta, M. (1997) J. Biol. Chem. 272, 11313–11320). Here, a series of homogeneously sized, 3H-labeled heparin fragments were evaluated for their capacity to bind to free glutathioneS-transferase (GST)-Tat protein and to immobilized GST-Tat. Hexasaccharides represent the minimum sized heparin fragments able to interact with GST-Tat at physiological ionic strength. Also, the affinity of binding increases with increasing the molecular size of the oligosaccharides, with large fragments (≥18 saccharides) approaching the affinity of full-size heparin. 6-Mer heparin binds GST-Tat with a dissociation constant (K d ) equal to 0.7 ± 0.4 μm and a molar oligosaccharide:GST-Tat ratio of about 1:1. Interaction of GST-Tat with 22-mer or full-size heparin is consistent instead with two-component binding. At subsaturating concentrations, a single molecule of heparin interacts with 4–6 molecules of GST-Tat with high affinity (K d values in the nanomolar range of concentration); at saturating concentrations, heparin binds GST-Tat with lower affinity (K d values in the micromolar range of concentration) and a molar oligosaccharide:GST-Tat ratio of about 1:1. In agreement with the binding data, a positive correlation exists between the size of heparin oligosaccharides and their capacity to inhibit cell internalization, long terminal repeat-transactivating activity of extracellular Tat in HL3T1 cells, and its mitogenic activity in murine adenocarcinoma T53 Tat-less cells. The data demonstrate that the modality of heparin-Tat interaction is strongly affected by the size of the saccharide chain. The possibility of establishing multiple interactions increases the affinity of large heparin fragments for Tat protein and the capacity of the glycosaminoglycan to modulate the biological activity of extracellular Tat.


Cell Growth & Differentiation | 1996

Basic fibroblast growth factor overexpression in endothelial cells: an autocrine mechanism for angiogenesis and angioproliferative diseases

Anna Gualandris; Marco Rusnati; Mirella Belleri; Enrico Emanuele Nelli; Maria Bastaki; Maria Pia Molinari-Tosatti; Fabrizio Bonardi; Silvia Parolini; Adriana Albini; Lucia Morbidelli; Marina Ziche; Alfredo Corallini; Laura Possati; Angelo Vacca; Domenico Ribatti; Marco Presta

Basic fibroblast growth factor (bFGF) is expressed in vascular endothelium during tumor neovascularization and angioproliferative diseases. The ultimate significance of this observation is poorly understood. We have investigated the biological consequences of endothelial cell activation by endogenous bFGF in a mouse aortic endothelial cell line stably transfected with a retroviral expression vector harboring a human bFGF cDNA. Selected clones expressing M(r) 24,000, M(r) 22,000, and/or M(r) 18,000 bFGF isoforms were characterized by a transformed morphology and an increased saturation density. bFGF transfectants showed invasive behavior and sprouting activity in three-dimensional fibrin gels and formed a complex network of branching cord-like structures connecting foci of infiltrating cells when seeded on laminin-rich basement membrane matrix (Matrigel). The invasive and morphogenetic behavior was prevented by anti-bFGF antibody, revealing the autocrine modality of the process. The biological consequences of this autocrine activation were investigated in vivo. bFGF-transfected cells gave rise to highly vascularized lesions resembling Kaposis sarcoma when injected in nude mice and induced angiogenesis in avascular rabbit cornea. When injected into the allantoic sac of the chick embryo, they caused an increase in vascular density and formation of hemangiomas in the chorioallantoic membrane. In conclusion, bFGF-overexpressing endothelial cells acquired an angiogenic phenotype and recruit quiescent endothelium originating angioproliferative lesions in vivo. These findings demonstrate that bFGF overexpression exerts an autocrine role for endothelial cells and support the notion that tumor neovascularization and angioproliferative diseases can be triggered by stimuli that induce vascular endothelium to produce its own autocrine factor(s).


Proceedings of the National Academy of Sciences of the United States of America | 2002

Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2.

Marco Rusnati; Chiara Urbinati; Elena Tanghetti; Patrizia Dell'Era; Hugues Lortat-Jacob; Marco Presta

Free gangliosides bind fibroblast growth factor 2 (FGF2), thus preventing cell interaction and biological activity of the growth factor in endothelial cells. Here we investigated the role of cell-associated gangliosides in mediating the biological activity of FGF2. Treatment of endothelial cells of different origin with the ganglioside biosynthesis inhibitors fumonisin B1, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol or D-1-threo-1-phenyl-2-hexa-decanoylamino-3-pyrrolidino-1-propanol-HCl, impairs their capacity to proliferate when exposed to FGF2. Also, the mitogenic activity of FGF2 is inhibited by the GM1-binding cholera toxin B subunit (CTB). Conversely, overloading of endothelial GM 7373 cell membranes with exogenous GM1 causes a 10-fold increase of the mitogenic potency of FGF2. 125I-FGF2 binds to cell membrane GM1 (Kd = 3 nM) in complex ganglioside/heparan sulfate-deficient Chinese hamster ovary (CHO)-K1-pgsA745 cell mutants that were overloaded with exogenous GM1. Moreover, FGF2 competes with FITC-CTB for the binding to cell membrane GM1 in different CHO cell lines independently of their capacity to express heparan sulfate proteoglycans. Conversely, CTB inhibits cell proliferation triggered by FGF2 in CHO cells overexpressing the tyrosine kinase FGF receptor 1. Finally, GM1-overloading confers to FGF receptor 1-transfected, complex ganglioside-deficient CHO-K1 cell mutants the capacity to proliferate when stimulated by FGF2. This proliferation is inhibited by CTB. Cell proliferation triggered by serum or by phorbol 12-myristate 13-acetate is instead independent of the cell membrane ganglioside milieu. In conclusion, cell membrane GM1 binds FGF2 and is required for the mitogenic activity of the growth factor. Our data indicate that cell-associated gangliosides may act as functional FGF2 co-receptors in different cell types.


Current Pharmaceutical Design | 2003

Heparin derivatives as angiogenesis inhibitors

Marco Presta; Daria Leali; Helena Stabile; Roberto Ronca; Maura Camozzi; L Coco; Emanuela Moroni; Sandra Liekens; Marco Rusnati

Angiogenesis is the process of generating new capillary blood vessels. Uncontrolled endothelial cell proliferation is observed in tumor neovascularization and in angioproliferative diseases. Tumors cannot growth as a mass above few mm(3) unless a new blood supply is induced. It derives that the control of the neovascularization process may affect tumor growth and may represent a novel approach to tumor therapy. Angiogenesis is controlled by a balance between proangiogenic and antiangiogenic factors. The angiogenic switch represents the net result of the activity of angiogenic stimulators and inhibitors, suggesting that counteracting even a single major angiogenic factor could shift the balance towards inhibition. Heparan sulfate proteoglycans are involved in the modulation of the neovascularization that takes place in different physiological and pathological conditions. This modulation occurs through the interaction with angiogenic growth factors or with negative regulators of angiogenesis. Thus, the study of the biochemical bases of this interaction may help to design glycosaminoglycan analogs endowed with angiostatic properties. The purpose of this review is to provide an overview of the structure/function of heparan sulfate proteoglycans in endothelial cells and to summarize the angiostatic properties of synthetic heparin-like compounds, chemically modified heparins, and biotechnological heparins.

Collaboration


Dive into the Marco Rusnati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Albini

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge