Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Siderius is active.

Publication


Featured researches published by Marco Siderius.


Science Signaling | 2010

HCMV-Encoded Chemokine Receptor US28 Mediates Proliferative Signaling Through the IL-6–STAT3 Axis

Erik Slinger; David Maussang; Andreas Schreiber; Marco Siderius; Afsar Rahbar; Alberto Fraile-Ramos; Sergio A. Lira; Cecilia Söderberg-Nauclér; Martine J. Smit

A viral G protein–coupled receptor may initiate a positive feedback loop to promote tumor proliferation and vascularization. A Viral Pathway to Tumor Development Human cytomegalovirus (HCMV), a widespread human herpesvirus that persists in a latent form, is associated with pathological processes in immunocompromised hosts and has been implicated in the development of several forms of cancer, including glioblastoma. HCMV encodes a G protein–coupled receptor, US28, that resembles a chemokine receptor and constitutively activates signaling pathways associated with cell proliferation. Slinger et al. expressed US28 in cultured cells to explore the mechanisms through which it could promote tumor development. They found that US28 stimulated the production and secretion of both vascular endothelial growth factor (VEGF) and the cytokine interleukin-6 (IL-6) and defined a signaling pathway whereby US28 increased cell proliferation through IL-6–dependent activation of the JAK1-STAT3 axis. IL-6 is itself a target of STAT3, leading the authors to propose that US28-dependent production and secretion of IL-6 and consequent autocrine and paracrine STAT3 activation lead to establishment of a positive feedback loop that promotes proliferation of both infected and neighboring cells. Analyses of human glioblastoma tissue revealed US28 and activated STAT3 in cells lining blood vessels, suggesting that US28 may play a role in tumor vascularization. US28 is a viral G protein (heterotrimeric guanosine triphosphate–binding protein)–coupled receptor encoded by the human cytomegalovirus (HCMV). In addition to binding and internalizing chemokines, US28 constitutively activates signaling pathways linked to cell proliferation. Here, we show increased concentrations of vascular endothelial growth factor and interleukin-6 (IL-6) in supernatants of US28-expressing NIH 3T3 cells. Increased IL-6 was associated with increased activation of the signal transducer and activator of transcription 3 (STAT3) through upstream activation of the Janus-activated kinase JAK1. We used conditioned growth medium, IL-6–neutralizing antibodies, an inhibitor of the IL-6 receptor, and short hairpin RNA targeting IL-6 to show that US28 activates the IL-6–JAK1–STAT3 signaling axis through activation of the transcription factor nuclear factor κB and the consequent production of IL-6. Treatment of cells with a specific inhibitor of STAT3 inhibited US28-dependent [3H]thymidine incorporation and foci formation, suggesting a key role for STAT3 in the US28-mediated proliferative phenotype. US28 also elicited STAT3 activation and IL-6 secretion in HCMV-infected cells. Analyses of tumor specimens from glioblastoma patients demonstrated colocalization of US28 and phosphorylated STAT3 in the vascular niche of these tumors. Moreover, increased phospho-STAT3 abundance correlated with poor patient outcome. We propose that US28 induces proliferation in HCMV-infected tumors by establishing a positive feedback loop through activation of the IL-6–STAT3 signaling axis.


Molecular Microbiology | 2000

Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway.

O.C.M.C. van Wuytswinkel; Vladimír Reiser; Marco Siderius; M. Kelders; Gustav Ammerer; Helmut Ruis; Willem H. Mager

The HOG/p38 MAP kinase route is an important stress‐activated signal transduction pathway that is well conserved among eukaryotes. Here, we describe a novel mechanism of activation of the HOG pathway in budding yeast. This mechanism operates upon severe osmostress conditions (1.4 M NaCl) and is independent of the Sln1p and Sho1p osmosensors. The alternative input feeds into the HOG pathway MAPKK Pbs2p and requires activation of Pbs2p by phosphorylation. We show that, upon severe osmotic shock, Hog1p nuclear accumulation and phosphorylation is delayed compared with mild stress. Moreover, both events lost their transient pattern, presumably because of the absence of negative feedback mediated by Ptp2p tyrosine phosphatase, which we found to be localized in the nucleus. Under severe osmotic stress conditions, the delayed nuclear accumulation correlates with a delay in stress‐responsive gene expression. Severe osmoshock leads to a situation in which active and nuclear‐localized Hog1p is transiently unable to induce transcription of osmotic stress‐responsive genes. It also appeared from our studies that the Sho1p osmosensor is less active under severe osmotic stress conditions, whereas the Sln1p/Ypd1p/Ssk1p sensor and signal transducer functions normally under these circumstances.


Molecular Microbiology | 2000

The control of intracellular glycerol in Saccharomyces cerevisiae influences osmotic stress response and resistance to increased temperature

Marco Siderius; O.C.M.C. van Wuytswinkel; K.A. Reijenga; M. Kelders; Willem H. Mager

Glycerol has been demonstrated to serve as the major osmolyte of Saccharomyces cerevisiae. Consistently, mutant strains gpd1gpd2 and gpp1gpp2, which are devoid of the main glycerol biosynthesis pathway, have been shown to be osmosensitive. In addition, the primary hyperosmotic stress response is affected in these strains. Hog1p phosphorylation turned out to be prolonged and osmostress‐induced gene expression is delayed compared with the kinetics observed in wild‐type cells. A hog1 deletion strain was previously found to contain lower internal glycerol and therefore displays an osmosensitive phenotype. Here, we show that the osmosensitivity of hog1 is suppressed by growth at 37°C. We reasoned that this temperature‐remedial osmoresistance might be caused by a higher intracellular glycerol level at the elevated temperature. This hypothesis was confirmed by measurement of the glycerol concentration, which was shown to be similar for wild type and hog1 cells only at elevated growth temperatures. In agreement with this finding, hog1 cells containing an fps1 allele, encoding a constitutively open glycerol channel, have lost their temperature‐remedial osmoresistance. Furthermore, gpd1gpd2 and gpp1gpp2 strains were found to be temperature sensitive. The growth defect of these strains could be suppressed by adding external glycerol. In conclusion, the ability to control glycerol levels influences proper osmostress‐induced signalling and the cellular potential to grow at elevated temperatures. These data point to an important, as yet unidentified, role of glycerol in cellular functioning.


Molecular and Cellular Biology | 2006

The middle domain of Hsp90 acts as a discriminator between different types of client proteins

P. Hawle; M. Siepmann; A. Harst; Marco Siderius; H.P. Reusch; W.M. Obermann

ABSTRACT The mechanism of client protein activation by Hsp90 is enigmatic, and it is uncertain whether Hsp90 employs a common route for all proteins. Using a mutational analysis approach, we investigated the activation of two types of client proteins, glucocorticoid receptor (GR) and the kinase v-Src by the middle domain of Hsp90 (Hsp90M) in vivo. Remarkably, the overall cellular activity of v-Src was highly elevated in a W300A mutant yeast strain due to a 10-fold increase in cellular protein levels of the kinase. In contrast, the cellular activity of GR remained almost unaffected by the W300A mutation but was dramatically sensitive to S485Y and T525I exchanges. In addition, we show that mutations S485Y and T525I in Hsp90M reduce the ATP hydrolysis rate, suggesting that Hsp90 ATPase is more tightly regulated than assumed previously. Therefore, the activation of GR and v-Src has various demands on Hsp90 biochemistry and is dependent on separate functional regions of Hsp90M. Thus, Hsp90M seems to discriminate between different substrate types and to adjust the molecular chaperone for proper substrate activation.


Molecular Microbiology | 2001

Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects.

Rebeca Alonso-Monge; Eliana Real; Iwona Wojda; Jan-Paul Bebelman; Willem H. Mager; Marco Siderius

The osmosensitive phenotype of the hog1 strain is suppressed at elevated temperature. Here, we show that the same holds true for the other commonly used HOG pathway mutant strains pbs2 and sho1ssk2ssk22, but not for ste11ssk2ssk22. Instead, the ste11ssk2ssk2 strain displayed a hyperosmosensitive phenotype at 37°C. This phenotype is suppressed by overexpression of LRE1, HLR1 and WSC3, all genes known to influence cell wall composition. The suppression of the temperature‐induced hyperosmosensitivity by these genes prompted us to investigate the role of STE11 and other HOG pathway components in cellular integrity and, indeed, we were able show that HOG pathway mutants display sensitivity to cell wall‐degrading enzymes. LRE1 and HLR1 were also shown to suppress the cell wall phenotypes associated with the HOG pathway mutants. In addition, the isolated multicopy suppressor genes suppress temperature‐induced cell lysis phenotypes of PKC pathway mutants that could be an indication for shared targets of the PKC pathway and high‐osmolarity response routes.


Fems Yeast Research | 2002

Novel insights into the osmotic stress response of yeast

Willem H. Mager; Marco Siderius

Response to hyperosmolarity in the bakers yeast Saccharomyces cerevisiae has attracted a great deal of attention of molecular and cellular biologists in recent years, from both the fundamental scientific and applied viewpoint. Indeed the underlying molecular mechanisms form a clear demonstration of the intricate interplay of (environmental) signalling events, regulation of gene expression and control of metabolism that is pivotal to any living cell. In this article we briefly review the cellular response to conditions of hyperosmolarity, with focus on the high-osmolarity glycerol mitogen-activated protein kinase pathway as the major signalling route governing cellular adaptations. Special attention will be paid to the recent finding that in the yeast cell also major structural changes occur in order to ensure maintenance of cell integrity. The intriguing role of glycerol in growth of yeast under (osmotic) stress conditions is highlighted.


Molecular Cell | 2012

Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine.

Wanping Xu; Mehdi Mollapour; Chrisostomos Prodromou; Suiquan Wang; Bradley T. Scroggins; Zach Palchick; Kristin Beebe; Marco Siderius; Min Jung Lee; Anthony D. Couvillon; Jane B. Trepel; Yoshihiko Miyata; Robert L. Matts; Len Neckers

Many critical protein kinases rely on the Hsp90 chaperone machinery for stability and function. After initially forming a ternary complex with kinase client and the cochaperone p50(Cdc37), Hsp90 proceeds through a cycle of conformational changes facilitated by ATP binding and hydrolysis. Progression through the chaperone cycle requires release of p50(Cdc37) and recruitment of the ATPase activating cochaperone AHA1, but the molecular regulation of this complex process at the cellular level is poorly understood. We demonstrate that a series of tyrosine phosphorylation events, involving both p50(Cdc37) and Hsp90, are minimally sufficient to provide directionality to the chaperone cycle. p50(Cdc37) phosphorylation on Y4 and Y298 disrupts client-p50(Cdc37) association, while Hsp90 phosphorylation on Y197 dissociates p50(Cdc37) from Hsp90. Hsp90 phosphorylation on Y313 promotes recruitment of AHA1, which stimulates Hsp90 ATPase activity, furthering the chaperoning process. Finally, at completion of the chaperone cycle, Hsp90 Y627 phosphorylation induces dissociation of the client and remaining cochaperones.


Microbiology | 1997

High-osmolarity signalling in Saccharomyces cerevisiae is modulated in a carbon-source-dependent fashion

Marco Siderius; Eveline Rots; Willem H. Mager

High-osmolarity-induced expression of the small heat-shock gene HSP12 is regulated by the HOG (high-osmolarity glycerol) pathway and PKA (protein kinase A). To analyse the regulatory input of both signal transduction pathways, high-salt-induced HSP12 expression in different genetic backgrounds on glucose-, ethanol- and glycerol-based culture media was examined. Upon exposure to high-osmolarity stress, the kinetics of induction of HSP12 in cells growing on the non-fermentable carbon sources are strikingly different from those on glucose. Derepression of HSP12 gene expression under non-stress conditions was observed in cells growing on non-fermentable carbon sources. High-salt challenge resulted in a lower induction of the HSP12 mRNA levels in ethanol-grown cells as compared to glucose-grown cells, whereas in glycerol-grown cells hardly any high-salt induction of HSP12 mRNA levels could be detected. Analysis of signalling through the HOG pathway suggested that glycerol may influence the activity of this signalling route, possible via negative feedback. Furthermore, the cellular level of PKA activity was found to have a great impact on stress-responsive gene transcription. On the basis of the data obtained it was concluded that modulation of PKA activity plays a major role in the stress response. A glucose-dependent, PKA-regulated cellular component is postulated to affect high-osmolarity-induced HSP12 expression.


Nature Reviews Drug Discovery | 2014

Herpesvirus-encoded GPCRs: neglected players in inflammatory and proliferative diseases?

Henry F. Vischer; Marco Siderius; Rob Leurs; Martine J. Smit

Herpesviruses encode membrane-associated G protein-coupled receptors (GPCRs) in their viral genomes that are structurally similar to chemokine receptors. These GPCRs hijack GPCR-mediated cellular signalling networks of the host for survival, replication and pathogenesis. In particular the herpesvirus-encoded chemokine receptors ORF74, BILF1 and US28, which are present at inflammatory sites and tumour cells, provide important virus-specific targets for directed therapies. Given the high druggability of GPCRs in general, these viral GPCRs can be considered promising antiviral drug targets.


Eukaryotic Cell | 2007

Cdc37p Is Required for Stress-Induced High-Osmolarity Glycerol and Protein Kinase C Mitogen-Activated Protein Kinase Pathway Functionality by Interaction with Hog1p and Slt2p (Mpk1p)

Patricija Hawle; Danielle Horst; Jan-Paul Bebelman; Xiao Xian Yang; Marco Siderius; Saskia M. van der Vies

ABSTRACT The yeast Saccharomyces cerevisiae utilizes rapidly responding mitogen-activated protein kinase (MAPK) signaling cascades to adapt efficiently to a changing environment. Here we report that phosphorylation of Cdc37p, an Hsp90 cochaperone, by casein kinase 2 controls the functionality of two MAPK cascades in yeast. These pathways, the high-osmolarity glycerol (HOG) pathway and the cell integrity (protein kinase C) MAPK pathway, mediate adaptive responses to high osmotic and cell wall stresses, respectively. Mutation of the phosphorylation site Ser14 in Cdc37p renders cells sensitive to osmotic stress and cell wall perturbation by calcofluor white. We found that levels of the MAPKs Hog1p and Slt2p (Mpk1p) in cells are reduced in a cdc37-S14A mutant, and consequently downstream responses mediated by Hog1p and Slt2p are compromised. Furthermore, we present evidence that Hog1p and Slt2p both interact in a complex with Cdc37p in vivo, something that has not been reported previously. The interaction of Hsp90, Slt2p, and Hog1p with Cdc37p depends on the phosphorylation status of Cdc37p. In fact, our biochemical data show that the osmosensitive phenotype of the cdc37-S14A mutant is due to the loss of the interaction between Cdc37p, Hog1p, and Hsp90. Likewise, during cell wall stress, the interaction of Slt2p with Cdc37p and Hsp90 is crucial for Slt2p-dependent downstream responses, such as the activation of the transcription factor Rlm1p. Interestingly, phosphorylated Slt2p, but not phosphorylated Hog1p, has an increased affinity for Cdc37p. Together these observations suggest that Cdc37p acts as a regulator of MAPK signaling.

Collaboration


Dive into the Marco Siderius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob Leurs

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Slinger

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iwona Wojda

Maria Curie-Skłodowska University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge