Marco Steinacher
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Steinacher.
Journal of Climate | 2013
Kirsten Zickfeld; Michael Eby; Andrew J. Weaver; Kaitlin Alexander; Elisabeth Crespin; Neil R. Edwards; A. V. Eliseev; Georg Feulner; Thierry Fichefet; Chris E. Forest; Pierre Friedlingstein; Hugues Goosse; Philip B. Holden; Fortunat Joos; Michio Kawamiya; David W. Kicklighter; Hendrik Kienert; Katsumi Matsumoto; I. I. Mokhov; Erwan Monier; Steffen M. Olsen; Jens Olaf Pepke Pedersen; Mahe Perrette; Gwenaëlle Philippon-Berthier; Andy Ridgwell; Adam Schlosser; Thomas Schneider von Deimling; Gary Shaffer; Andrei P. Sokolov; Renato Spahni
AbstractThis paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6–6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 resu...
Geophysical Research Letters | 2012
Andrew J. Weaver; Jan Sedláček; Michael Eby; Kaitlin Alexander; Elisabeth Crespin; Thierry Fichefet; Gwenaëlle Philippon-Berthier; Fortunat Joos; Michio Kawamiya; Katsumi Matsumoto; Marco Steinacher; Kaoru Tachiiri; Kathy S. Tokos; Masakazu Yoshimori; Kirsten Zickfeld
The evolution of the Atlantic Meridional Overturning Circulation (MOC) in 30 models of varying complexity is examined under four distinct Representative Concentration Pathways. The models include 25 Atmosphere-Ocean General Circulation Models (AOGCMs) or Earth System Models (ESMs) that submitted simulations in support of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and 5 Earth System Models of Intermediate Complexity (EMICs). While none of the models incorporated the additional effects of ice sheet melting, they all projected very similar behaviour during the 21st century. Over this period the strength of MOC reduced by a best estimate of 22% (18%-25%; 5%-95% confidence limits) for RCP2.6, 26% (23%-30%) for RCP4.5, 29% (23%-35%) for RCP6.0 and 40% (36%-44%) for RCP8.5. Two of the models eventually realized a slow shutdown of the MOC under RCP8.5, although no model exhibited an abrupt change of the MOC. Through analysis of the freshwater flux across 30°-32°S into the Atlantic, it was found that 40% of the CMIP5 models were in a bistable regime of the MOC for the duration of their RCP integrations. The results support previous assessments that it is very unlikely that the MOC will undergo an abrupt change to an off state as a consequence of global warming.
Global Biogeochemical Cycles | 2009
Thomas L. Frölicher; Fortunat Joos; Gian-Kasper Plattner; Marco Steinacher; Scott C. Doney
Internal and externally forced variability in oceanic oxygen (O2) are investigated on different spatiotemporal scales using a six-member ensemble from the National Center for Atmospheric Research CSM1.4-carbon coupled climate model. The oceanic O2 inventory is projected to decrease significantly in global warming simulations of the 20th and 21st centuries. The anthropogenically forced O2 decrease is partly compensated by volcanic eruptions, which cause considerable interannual to decadal variability. Volcanic perturbations in oceanic oxygen concentrations gradually penetrate the oceans top 500 m and persist for several years. While well identified on global scales, the detection and attribution of local O2 changes to volcanic forcing is difficult because of unforced variability. Internal climate modes can substantially contribute to surface and subsurface O2 variability. Variability in the North Atlantic and North Pacific are associated with changes in the North Atlantic Oscillation and Pacific Decadal Oscillation indexes. Simulated decadal variability compares well with observed O2 changes in the North Atlantic, suggesting that the model captures key mechanisms of late 20th century O2 variability, but the model appears to underestimate variability in the North Pacific. Our results suggest that large interannual to decadal variations and limited data availability make the detection of human-induced O2 changes currently challenging.
Nature | 2013
Marco Steinacher; Fortunat Joos; Thomas F. Stocker
Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise, ocean acidification and net primary production on land. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies, climate sensitivity and carbon cycle feedbacks along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.
Ecological Monographs | 2013
Willy Tinner; Danielle Colombaroli; O. M. Heiri; Paul D. Henne; Marco Steinacher; Johanna Untenecker; Elisa Vescovi; Judy R. M. Allen; Gabrielle Carraro; Marco Conedera; Fortunat Joos; André F. Lotter; Jürg Luterbacher; Stéphanie Samartin; Verushka Valsecchi
Paleoecology can provide valuable insights into the ecology of species that complement observation and experiment-based assessments of climate impact dynamics. New paleoecological records (e.g., pollen, macrofossils) from the Italian Peninsula suggest a much wider climatic niche of the important European tree species Abies alba (silver fir) than observed in its present spatial range. To explore this discrepancy between current and past distribution of the species, we analyzed climatic data (temperature, precipitation, frost, humidity, sunshine) and vegetation-independent paleoclimatic reconstructions (e.g., lake levels, chironomids) and use global coupled carbon-cycle climate (NCAR CSM1.4) and dynamic vegetation (LandClim) modeling. The combined evidence suggests that during the mid-Holocene (;6000 years ago), prior to humanization of vegetation, A. alba formed forests under conditions that exceeded the modern (1961–1990) upper temperature limit of the species by ;5–78C (July means). Annual precipitation during this natural period was comparable to today (.700–800 mm), with drier summers and wetter winters. In the meso-Mediterranean to sub-Mediterranean forests A. alba co-occurred with thermophilous taxa such as Quercus ilex, Q. pubescens, Olea europaea, Phillyrea, Arbutus, Cistus, Tilia, Ulmus, Acer, Hedera helix, Ilex aquifolium, Taxus, and Vitis. Results from the last interglacial (ca. 130 000–115 000 BP), when human impact was negligible, corroborate the Holocene evidence. Thermophilous Mediterranean A. alba stands became extinct during the last 5000 years when land-use pressure and specifically excessive anthropogenic fire and browsing disturbance increased. Our results imply that the ecology of this key European tree species is not yet well understood. On the basis of the reconstructed realized climatic niche of the species, we anticipate that the future geographic range of A. alba may not contract regardless of migration success, even if climate should become significantly warmer than today with summer temperatures increasing by up to 5–78C, as long as precipitation does not fall below 700–800 mm/yr, and anthropogenic disturbance (e.g., fire, browsing) does not become excessive. Our finding contradicts recent studies that projected range contractions under global-warming scenarios, but did not factor how millennia of human impacts reduced the realized climatic niche of A. alba.
Frontiers in Marine Science | 2014
Esteban Acevedo-Trejos; Gunnar Brandt; Marco Steinacher; Agostino Merico
It is expected that climate change will have significant impacts on ecosystems. Most model projections agree that the ocean will experience stronger stratification and less nutrient supply from deep waters. These changes will likely affect marine phytoplankton communities and will thus impact on the higher trophic levels of the oceanic food web. The potential consequences of future climate change on marine microbial communities can be investigated and predicted only with the help of mathematical models. Here we present the application of a model that describes aggregate properties of marine phytoplankton communities and captures the effects of a changing environment on their composition and adaptive capacity. Specifically, the model describes the phytoplankton community in terms of total biomass, mean cell size, and functional diversity. The model is applied to two contrasting regions of the Atlantic Ocean (tropical and temperate) and is tested under two emission scenarios: SRES A2 or “business as usual” and SRES B1 or “local utopia.” We find that all three macroecological properties will decline during the next century in both regions, although this effect will be more pronounced in the temperate region. Being consistent with previous model predictions, our results show that a simple trait-based modeling framework represents a valuable tool for investigating how phytoplankton communities may reorganize under a changing climate.
Archive | 2016
Yumiko Yara; Hiroya Yamano; Marco Steinacher; Masahiko Fujii; Meike Vogt; Nicolas Gruber; Yasuhiro Yamanaka
Using the results from the NCAR CSM1.4-coupled global carbon cycle–climate model under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios SRES A2 and B1, we estimated the effects of both global warming and ocean acidification on the future habitats of corals in the seas around Japan during this century. As shown by Yara et al. (Biogeosciences 9:4955–4968, 2012), under the high-CO2-emission scenario (SRES A2), coral habitats will be sandwiched and narrowed between the northern region, where the saturation state of the carbonate mineral aragonite (Ωarag) decreases, and the southern region, where coral bleaching occurs. We found that under the low-emission scenario SRES B1, the coral habitats will also shrink in the northern region by the reduced Ωarag but to a lesser extent than under SRES A2, and in contrast to SRES A2, no bleaching will occur in the southern region. Therefore, coral habitats in the southern region are expected to be largely unaffected by ocean acidification or surface warming under the low-emission scenario. Our results show that potential future coral habitats depend strongly on CO2 emissions and emphasize the importance of reducing CO2 emissions to prevent negative impacts on coral habitats.
Biogeosciences | 2009
Marco Steinacher; Fortunat Joos; Thomas L. Frölicher; Laurent Bopp; P. Cadule; Valentina Cocco; Scott C. Doney; M. Gehlen; Keith Lindsay; J. K. Moore; Birgit Schneider; Joachim Segschneider
Biogeosciences | 2009
Marco Steinacher; Fortunat Joos; Thomas L. Frölicher; Gian-Kasper Plattner; Scott C. Doney
Atmospheric Chemistry and Physics | 2012
Fortunat Joos; Raphael Roth; Jan S. Fuglestvedt; Glen P. Peters; I. G. Enting; W. von Bloh; Victor Brovkin; E. J. Burke; Michael Eby; Neil R. Edwards; Tobias Friedrich; Thomas L. Frölicher; Paul R. Halloran; Philip B. Holden; Chris D. Jones; Thomas Kleinen; Fred T. Mackenzie; Katsumi Matsumoto; Malte Meinshausen; Gian-Kasper Plattner; Andy Reisinger; Joachim Segschneider; Gary Shaffer; Marco Steinacher; Kuno M. Strassmann; Katsumasa Tanaka; Axel Timmermann; Andrew J. Weaver