Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Tasin is active.

Publication


Featured researches published by Marco Tasin.


Journal of Chemical Ecology | 2005

ANTENNAL AND BEHAVIORAL RESPONSES OF GRAPEVINE MOTH Lobesia botrana FEMALES TO VOLATILES FROM GRAPEVINE

Marco Tasin; Gianfranco Anfora; C. Ioriatti; Silvia Carlin; Antonio De Cristofaro; S. Schmidt; Marie Bengtsson; Giuseppe Versini; Peter Witzgall

Grapevine moth Lobesia botrana is the economically most important insect of grapevine Vitis vinifera in Europe. Flower buds, flowers, and green berries of Chardonnay grapevine are known to attract L. botrana for oviposition. The volatile compounds collected from these phenological stages were studied by gas chromatography—mass spectrometry, and the antennal response of L. botrana females to these headspace collections was recorded by gas chromatography—electroantennography. The compounds found in all phenological stages, which consistently elicited a strong antennal response, were pentadecane, nonanal, and α -farnesene. In a wind tunnel, gravid L. botrana females flew upwind to green grapes, as well as to headspace collections from these berries released by a piezoelectric sprayer release device. However, no females landed at the source of headspace volatiles, possibly due to inappropriate concentrations or biased ratios of compounds in the headspace extracts.


Journal of Applied Entomology | 2004

Antennal and behavioural response of codling moth Cydia pomonella to plant volatiles

Lena Ansebo; Miryan Coracini; Marie Bengtsson; Ilme Liblikas; M. Ramirez; Anna-Karin Borg-Karlson; Marco Tasin; Peter Witzgall

Identification of host volatile compounds attractive to codling moth Cydia pomonella, a most important insect of apple, will contribute to the development of safe control techniques. Synthetic apple volatiles in two doses were tested for antennal and behavioural activity in codling moth. Female antennae strongly responded to (Z)3‐hexenol, (Z)3‐hexenyl benzoate, (Z)3‐hexenyl hexanoate, (±)‐linalool and E,E‐α‐farnesene. Two other compounds eliciting a strong antennal response were the pear ester, ethyl (E,Z)‐2,4‐decadienoate, and its corresponding aldehyde, E,E‐2,4‐decadienal, which is a component of the larval defence secretion of the European apple sawfly. Attraction of codling moth to compounds eliciting a strong antennal response was tested in a wind tunnel. Male moths were best attracted to a blend of (E,E)‐α‐farnesene, (E)‐beta‐farnesene and ethyl (E,Z)‐2,4‐decadienoate. The aldehyde E,E‐2,4‐decadienal had an antagonistic effect when added to the above mixture.


Journal of Chemical Ecology | 2009

Synthetic Grape Volatiles Attract Mated Lobesia botrana Females in Laboratory and Field Bioassays

Gianfranco Anfora; Marco Tasin; Antonio De Cristofaro; C. Ioriatti; Andrea Lucchi

In laboratory experiments, we identified and quantified volatiles emitted by inflorescences and berries of two grape varieties (Trebbiano and Sangiovese) and examined the effects of the volatiles on oviposition by the grapevine moth Lobesia botrana. Compared to Trebbiano, Sangiovese is relatively more susceptible to L. botrana infestations under natural conditions. Chemical and electrophysiological analysis indicated only quantitative differences between the volatiles released by the two varieties. In a dual-choice oviposition bioassay based only on volatile cues, females did not show any preference between the two varieties. The six major components of the odor profiles that were GC-EAD-active to female antennae included: limonene, 4,8-dimethyl-1,(E)-3,7-nonatriene, (±)-linalool, (E)-caryophyllene, (E,E)-α-farnesene, and methyl salicylate. At the beginning of the berry touch phenological stage, their proportions were about 10:0.6:0.4:0.5:0.9:0.6 in Trebbiano and 10:1:0.4:1.5:0.4:0.3 in Sangiovese. A six-component synthetic lure (with the proportion 10:1:1:1:1:1, which approximated the ratio of components released by both varieties) was used in further laboratory oviposition bioassays. Depending on its dosage, the synthetic lure either attracted or repelled oviposition. L. botrana females laid significantly more eggs in the presence of either the grape bunches or the synthetic lure at the attractive dosage. In a release-capture experiment conducted in a field cage that covered two grapevine rows, the synthetic lure was more attractive than a grape cluster or a blank control, and it stimulated oviposition on the vegetation near the lure. The results indicate that L. botrana uses olfactory cues to select oviposition sites and that an artificial lure, containing the major volatiles released by two grape varieties, may be useful in monitoring female activity in the field.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Neural coding merges sex and habitat chemosensory signals in an insect herbivore.

Frederica Trona; Gianfranco Anfora; Anna Balkenius; Marie Bengtsson; Marco Tasin; Alan L. Knight; Niklas Janz; Peter Witzgall; Rickard Ignell

Understanding the processing of odour mixtures is a focus in olfaction research. Through a neuroethological approach, we demonstrate that different odour types, sex and habitat cues are coded together in an insect herbivore. Stronger flight attraction of codling moth males, Cydia pomonella, to blends of female sex pheromone and plant odour, compared with single compounds, was corroborated by functional imaging of the olfactory centres in the insect brain, the antennal lobes (ALs). The macroglomerular complex (MGC) in the AL, which is dedicated to pheromone perception, showed an enhanced response to blends of pheromone and plant signals, whereas the response in glomeruli surrounding the MGC was suppressed. Intracellular recordings from AL projection neurons that transmit odour information to higher brain centres, confirmed this synergistic interaction in the MGC. These findings underscore that, in nature, sex pheromone and plant odours are perceived as an ensemble. That mating and habitat cues are coded as blends in the MGC of the AL highlights the dual role of plant signals in habitat selection and in premating sexual communication. It suggests that the MGC is a common target for sexual and natural selection in moths, facilitating ecological speciation.


Journal of Chemical Ecology | 2008

Responses of the Mediterranean Pine Shoot Beetle Tomicus destruens (Wollaston) to Pine Shoot and Bark Volatiles

Massimo Faccoli; Gianfranco Anfora; Marco Tasin

The pine shoot beetle Tomicus destruens has two dispersal phases per generation. In the first, mature adults move toward trunks of dying pines to lay eggs; in the second, callow adults move toward the shoots of healthy pines for maturation feeding. However, there is no information on the chemical stimuli that govern host selection by T. destruens adults. The aims of this study were: (1) to identify the volatiles released by shoots and bark of stone pine that are behaviorally and electrophysiologically active on T. destruens; (2) to verify which blends and concentrations of such volatiles are differently active on males and females, as well as on callow and mature adults, during the two host search phases (breeding and feeding). A four-arm olfactometer was used to test the behavior of walking T. destruens adults toward various sources of volatiles including fresh shoots and bark, their collected volatiles, and two synthetic blends. For each odor, the behavior of both callow and mature males and females was recorded individually. Shoot and bark extracts were analyzed by coupled gas chromatography and mass spectrometry (GC–MS), and tested by gas chromatography coupled with electroantennography (GC–EAD) on T. destruens males and females. Two blends of two (α-pinene and β-myrcene; blend A) and three (α-pinene, β- myrcene, and α-terpinolene; blend B) synthetic compounds, chosen among those that induce EAD responses and known to be attractive for other bark beetle species, were tested in the olfactometer at five concentrations. Insect behavior was affected by the degree of sexual maturation but not by sex. Callow insects were attracted by shoots and their extracts, while mature individuals by bark and its extracts. Six extracted compounds were active on T. destruens antennae: limonene, (Z)-3-hexen-1-ol and β-caryophyllene, α-pinene, β-myrcene, and α-terpinolene. α-Terpinolene, released only by bark, was active only on mature insects, whereas (Z)-3-hexen-1-ol, released only by shoots, was active only on callows. Males and females showed similar EAD responses. Of the six extracted volatiles, two were attractive for callow adults (blend A) and three for matures (blend B). In both cases, responses were positively correlated with blend concentration, although a repellent effect was noted at the highest concentrations.


Phytochemistry | 2011

Volatiles that encode host-plant quality in the grapevine moth.

Marco Tasin; Emanuela Betta; Silvia Carlin; Flavia Gasperi; Fulvio Mattivi

Plant volatiles are signals used by herbivorous insects to locate host plants and select oviposition sites. Whether such volatiles are used as indicators of plant quality by adult insects in search of host plants has been rarely tested. We tested whether volatiles indicate plant quality by studying the oviposition of the grapevine moth Lobesia botrana on the grapevine plant Vitis vinifera. Host plants were infected with a variety of microorganisms, and larval fitness was correlated to the infected state of the substrate. Our results show an oviposition preference for volatiles that is significantly correlated with the fitness of the substrate. The chemical profiles of the bouquets from each V. vinifera-microorganism system are clearly differentiated in a PCA analysis. Both the volatile signal and the quality of the plant as larval food were affected by the introduction of microorganisms. Our study represents a broad approach to the study of plant-insect interactions by considering not only the direct effect of the plant but also the effect of plant-microorganism interactions on insect population dynamics.


Journal of Chemical Ecology | 2005

New Pheromone Components of the Grapevine Moth Lobesia botrana

Peter Witzgall; Marco Tasin; Hans-Ruedi Buser; Gertrud Wegner-Kiß; Vicente S. Marco Mancebón; C. Ioriatti; Anna-Carin Bäckman; Marie Bengtsson; Lutz Lehmann; Wittko Francke

Analysis of extracts of sex pheromone glands of grapevine moth females Lobesia botrana showed three previously unidentified compounds, (E)-7-dodecenyl acetate and the (E,E)- and (Z,E)-isomers of 7,9,11-dodecatrienyl acetate. This is the first account of a triply unsaturated pheromone component in a tortricid moth. The monoenic acetate (E)-7-dodecenyl acetate and the trienic acetate (7Z,9E,11)-dodecatrienyl acetate significantly enhanced responses of males to the main pheromone compound, (7E,9Z)-7,9-dodecadienyl acetate, in the wind tunnel. The identification of sex pheromone synergists in L. botrana may be of practical importance for the development of integrated pest management systems.


Entomologia Experimentalis Et Applicata | 2008

Effect of anti-hail nets on Cydia pomonella behavior in apple orchards

Marco Tasin; Daniele Demaria; Camilla Ryne; Alessandro Cesano; Aldo Galliano; Gianfranco Anfora; C. Ioriatti; Alberto Alma

Over the last 10 years, the use of nets to protect pome fruit from hailstorms has increased. In this study, we investigated the effect of these nets on the behavior of the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), a major pest of apple, Malus domestica Borkh. (Rosaceae). Experiments were carried out in net‐covered and uncovered apple orchards treated with conventional insecticides. The number of codling moth males caught in pheromone‐ and virgin female‐baited traps was significantly reduced in net‐covered compared to uncovered plots. In addition, inhibition of mating by the net was demonstrated by significant reductions in mating of tethered virgin females. Fruit injury was consistently lower in net‐covered plots vs. uncovered plots. Because of the reductions in male trap catch, the reduced female mating frequency, and the lower level of damage, we conclude that flat anti‐hail nets have a disruptive effect on the reproductive behavior of the codling moth.


Pest Management Science | 2014

Disruption of Phthorimaea operculella (Lepidoptera: Gelechiidae) oviposition by the application of host plant volatiles

Gianfranco Anfora; S. Vitagliano; Mattias C. Larsson; Peter Witzgall; Marco Tasin; Giacinto Salvatore Germinara; Antonio De Cristofaro

BACKGROUND Phthorimaea operculella is a key pest of potato. The authors characterised the P. operculella olfactory system, selected the most bioactive host plant volatiles and evaluated their potential application in pest management. The electrophysiological responses of olfactory receptor neurons (ORNs) housed in long sensilla trichodea of P. operculella to plant volatiles and the two main sex pheromone components were evaluated by the single-cell recording (SCR) technique. The four most SCR-active volatiles were tested in a laboratory oviposition bioassay and under storage warehouse conditions. RESULTS The sensitivity of sensilla trichodea to short-chained aldehydes and alcohols and the existence of ORNs tuned to pheromones in females were characterised. Male recordings revealed at least two types of ORN, each of which typically responded to one of the two pheromone components. Hexanal, octanal, nonanal and 1-octen-3-ol significantly disrupted the egg-laying behaviour in a dose-dependent manner. Octanal reduced the P. operculella infestation rate when used under storage conditions. CONCLUSIONS This work provides new information on the perception of plant volatiles and sex pheromones by P. operculella. Laboratory and warehouse experiments show that the use of hexanal, octanal, nonanal and 1-octen-3-ol as host recognition disruptants and/or oviposition deterrents for P. operculella control appears to be a promising strategy.


Entomologia Experimentalis Et Applicata | 2005

Attractiveness of year-old polyethylene Isonet sex pheromone dispensers for Lobesia botrana

Gianfranco Anfora; Marco Tasin; Anna-Carin Bäckman; Antonio De Cristofaro; Peter Witzgall; Clvaudio Ioriatti

In this study, we have compared the release of sex pheromone from mating disruption dispensers exposed in the field for 12 months and from calling females. The main pheromone component of the grapevine moth, Lobesia botrana (D. and S.) (Lepidoptera: Tortricidae), is (E)‐7,(Z)‐9‐dodecadienyl acetate, and a minor component is (Z)‐9‐dodecenyl acetate. Aged dispensers from two different years emitted a much higher amount of both pheromone components than calling females. However, the summer temperature during field exposure influenced the release from mating disruption dispensers the following year. In the wind tunnel, male L. botrana were equally attracted to 12‐month, field‐exposed dispensers, a standard monitoring pheromone lure, and to synthetic (E)‐7,(Z)‐9‐dodecadienyl acetate sprayed at the rate of 0.6–60 ng h−1. Field trapping tests confirmed that aged dispensers from both years were at least as attractive to L. botrana males as a standard monitoring pheromone lure. The possible contribution of previously applied dispensers to the mating disruption efficacy during following applications is discussed.

Collaboration


Dive into the Marco Tasin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Witzgall

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

C. Ioriatti

Edmund Mach Foundation

View shared research outputs
Top Co-Authors

Avatar

Marie Bengtsson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna-Carin Bäckman

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Birgitta Rämert

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Mario Porcel

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan L. Knight

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge