Marco Tatullo
University of Bari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Tatullo.
Journal of Tissue Engineering and Regenerative Medicine | 2015
Marco Tatullo; Massimo Marrelli; Kevin M. Shakesheff; Lisa J. White
Dental pulp stem cells (DPSCs) are a promising source of cells for numerous and varied regenerative medicine applications. Their natural function in the production of odontoblasts to create reparative dentin support applications in dentistry in the regeneration of tooth structures. However, they are also being investigated for the repair of tissues outside of the tooth. The ease of isolation of DPSCs from discarded or removed teeth offers a promising source of autologous cells, and their similarities with bone marrow stromal cells (BMSCs) suggest applications in musculoskeletal regenerative medicine. DPSCs are derived from the neural crest and, therefore, have a different developmental origin to BMSCs. These differences from BMSCs in origin and phenotype are being exploited in neurological and other applications. This review briefly highlights the source and functions of DPSCs and then focuses on in vivo applications across the breadth of regenerative medicine.
International Journal of Medical Sciences | 2015
Marco Tatullo; Massimo Marrelli; Francesco Paduano
Regenerative medicine is an emerging field of biotechnology that combines various aspects of medicine, cell and molecular biology, materials science and bioengineering in order to regenerate, repair or replace tissues. The oral surgery and maxillofacial surgery have a role in the treatment of traumatic or degenerative diseases that lead to a tissue loss: frequently, to rehabilitate these minuses, you should use techniques that have been improved over time. Since 1990, we started with the use of growth factors and platelet concentrates in oral and maxillofacial surgery; in the following period we start to use biomaterials, as well as several type of scaffolds and autologous tissues. The frontier of regenerative medicine nowadays is represented by the mesenchymal stem cells (MSCs): overcoming the ethical problems thanks to the use of mesenchymal stem cells from adult patient, and with the increasingly sophisticated technology to support their manipulation, MSCs are undoubtedly the future of medicine regenerative and they are showing perspectives unimaginable just a few years ago. Most recent studies are aimed to tissues regeneration using MSCs taken from sites that are even more accessible and rich in stem cells: the oral cavity turned out to be an important source of MSCs with the advantage to be easily accessible to the surgeon, thus avoiding to increase the morbidity of the patient. The future is the regeneration of whole organs or biological systems consisting of many different tissues, starting from an initial stem cell line, perhaps using innovative scaffolds together with the nano-engineering of biological tissues.
International Journal of Medical Sciences | 2012
Marco Tatullo; Massimo Marrelli; Michele Cassetta; Andrea Pacifici; Luigi Vito Stefanelli; Salvatore Scacco; Gianna Dipalma; Luciano Pacifici; Francesco Inchingolo
Introduction. Maxillary bone losses often require additional regenerative procedures: as a supplement to the procedures of tissue regeneration, a platelet concentrate called PRF (Platelet Rich Fibrin) was tested for the first time in France by Dr. Choukroun. Aim of the present study is to investigate, clinically and histologically, the potential use of PRF, associated with deproteinized bovine bone (Bio-Oss), as grafting materials in pre-implantology sinus grafting of severe maxillary atrophy, in comparison with a control group, in which only deproteinized bovine bone (Bio-Oss) was used as reconstructive material. Materials and Methods. 60 patients were recruited using the cluster-sampling method; inclusion criteria were maxillary atrophy with residual ridge < 5mm. The major atrophies in selected patients involved sinus-lift, with a second-look reopening for the implant insertion phase. The used grafting materials were: a) Bio-Oss and b) amorphous and membranous PRF together with Bio-Oss. We performed all operations by means of piezosurgery in order to reduce trauma and to optimize the design of the operculum on the cortical bone. The reopening of the surgical area was scheduled at 3 different times. Results. 72 sinus lifts were performed with subsequent implants insertions. We want to underline how the histological results proved that the samples collected after 106 days (Early protocol) with the adding of PRF were constituted by lamellar bone tissue with an interposed stroma that appeared relaxed and richly vascularized. Conclusions. The use of PRF and piezosurgery reduced the healing time, compared to the 150 days described in literature, favoring optimal bone regeneration. At 106 days, it is already possible to achieve good primary stability of endosseous implants, though lacking of functional loading.
Head & Neck Oncology | 2011
Francesco Inchingolo; Marco Tatullo; Fabio Massimo Abenavoli; Massimo Marrelli; Alessio D. Inchingolo; Angelo M. Inchingolo; Gianna Dipalma
IntroductionThe expression non Hodgkin lymphoma is used to cover a wide group of lymphoid neoplasias unrelated to Hodgkins disease, due to the huge histological variety and the tendency to affect organs and tissues that does not physiologically contain lymphoid cells.The intraoral location is not frequent (3 - 5 percent of cases) and the initial manifestations of the disease rarely take place here.Case presentationWe describe the case of a 73 years old Italian caucasian male who came to our attention with a tongue lesion. The clinical manifestation was macroglossia and bleeding, probably deriving from the tongue-bite injuries.The patient had been complaining of dyspnea for 48 hours.ConclusionA tongue affected by non-Hodgkins lymphoma rarely occurs. In spite of this, this possibility should always be considered for the differential diagnosis of benign and malignant lesions affecting such area.A rapid diagnostic assessment, together with an adequate histopathologic verification, are indeed essential to improve the management and the prognosis of this disease.
International Journal of Biological Sciences | 2013
Massimo Marrelli; Francesco Paduano; Marco Tatullo
We provide a detailed description of mesenchymal stem cells (MSCs) isolated from human periapical cysts, which we have termed hPCy-MSCs. These cells have a fibroblast-like shape and adhere to tissue culture plastic surfaces. hPCy-MSCs possess high proliferative potential and self-renewal capacity properties. We characterised the immunophenotype of hPCy-MSCs (CD73+, CD90+, CD105+, CD13+, CD29+, CD44+, CD45-, STRO-1+, CD146+) by flow cytometry and immunofluorescence. hPCy-MSCs possess the potential to differentiate into osteoblast- and adipocyte-like cells in vitro. Multi-potentiality was evaluated with culture-specific staining and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis for osteo/odontogenic and adipogenic markers. This is the first report to indicate that human periapical cysts contain cells with MSC-like properties. Taken together, our findings indicate that human periapical cysts could be a rich source of MSCs.
PLOS ONE | 2016
Francesco Paduano; Massimo Marrelli; Lisa J. White; Kevin M. Shakesheff; Marco Tatullo
Objectives The aim of this study was to evaluate the level of odontogenic differentiation of dental pulp stem cells (DPSCs) on hydrogel scaffolds derived from bone extracellular matrix (bECM) in comparison to those seeded on collagen I (Col-I), one of the main components of dental pulp ECM. Methods DPSCs isolated from human third molars were characterized for surface marker expression and odontogenic potential prior to seeding into bECM or Col-I hydrogel scaffolds. The cells were then seeded onto bECM and Col-I hydrogel scaffolds and cultured under basal conditions or with odontogenic and growth factor (GF) supplements. DPSCs cultivated on tissue culture polystyrene (TCPS) with and without supplements were used as controls. Gene expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE) was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and mineral deposition was observed by Von Kossa staining. Results When DPSCs were cultured on bECM hydrogels, the mRNA expression levels of DSPP, DMP-1 and MEPE genes were significantly upregulated with respect to those cultured on Col-I scaffolds or TCPS in the absence of extra odontogenic inducers. In addition, more mineral deposition was observed on bECM hydrogel scaffolds as demonstrated by Von Kossa staining. Moreover, DSPP, DMP-1 and MEPE mRNA expressions of DPSCs cultured on bECM hydrogels were further upregulated by the addition of GFs or osteo/odontogenic medium compared to Col-I treated cells in the same culture conditions. Significance These results demonstrate the potential of the bECM hydrogel scaffolds to stimulate odontogenic differentiation of DPSCs.
International Journal of Immunopathology and Pharmacology | 2016
Marco Tatullo; Massimo Marrelli; Giovanni Falisi; Claudio Rastelli; Francesca Palmieri; Marco Gargari; Barbara Zavan; Francesco Paduano; Vincenzo Benagiano
Tissue engineering applications need a continuous development of new biomaterials able to generate an ideal cell–extracellular matrix interaction. The stem cell fate is regulated by several factors, such as growth factors or transcription factors. The most recent literature has reported several publications able to demonstrate that environmental factors also contribute to the regulation of stem cell behavior, leading to the opinion that the environment plays the major role in the cell differentiation. The interaction between mesenchymal stem cells (MSCs) and extracellular environment has been widely described, and it has a crucial role in regulating the cell phenotype. In our laboratory (Tecnologica Research Institute, Crotone, Italy), we have recently studied how several physical factors influence the distribution and the morphology of MSCs isolated from dental pulp, and how they are able to regulate stem cell differentiation. Mechanical and geometrical factors are only a small part of the environmental factors able to influence stem cell behavior, however, this influence should be properly known: in fact, this assumption must be clearly considered during those studies involving MSCs; furthermore, these interactions should be considered as an important bias that involves an high number of studies on the MSCs, since in worldwide laboratories the scientists mostly use tissue culture plates for their experiments.
International Journal of Medical Sciences | 2014
Francesco Inchingolo; Massimo Marrelli; Susanna Annibali; Maria Paola Cristalli; Gianna Dipalma; Alessio D. Inchingolo; Antonio Palladino; Angelo M. Inchingolo; Marco Gargari; Marco Tatullo
Introduction: An increased production of oxidizing species related to reactive oral diseases, such as chronic apical periodontitis, could have systemic implications such as an increase in cardiovascular morbidity. Based on this consideration, we conducted a prospective study to assess whether subjects affected by chronic periodontitis presented with higher values of oxidative stress than reference values before endodontic treatment, and whether endodontic treatment can reduce the oxidative imbalance and bring it back to normal in these subjects. Materials and methods: The authors recruited 2 groups of patients from private studies and dental clinics: these patients were recruited randomly. The oxidative balance in both patients with chronic apical periodontitis (CAP) and healthy control patients was determined by measuring the oxidant status, using an identification of the reactive oxygen metabolites (d-ROMs) test, while the antioxidant status in these patients was determined using a biological antioxidant potential (BAP) test. Both these tests were carried on plasma samples taken from enrolled patients. Values were measured both before the endodontic treatment of the patients with chronic apical periodontitis, and 30 and 90 days after treatment, and compared to those obtained from healthy control patients. Results: It was found that, on recruitment, the patients with chronic apical periodontitis exhibited significantly higher levels of oxidative stress than control patients, as determined by the d-ROMs and BAP tests. Furthermore, the d-ROMs test values were shown to decrease and the BAP test values to increase over time in patients with chronic apical periodontitis following endodontic therapy. As the levels of oxidative stress in these patients tended to reduce and return to normal by 90 days following treatment. Conclusions: This study has demonstrated a positive association between chronic apical periodontitis and oxidative stress. Subjects affected by chronic apical periodontitis are exposed to a condition of oxidative stress, which is extremely dangerous to general health. Moreover, one can infer from these findings that through proper endodontic therapy, a good oxidative balance can be restored, thereby avoiding the risk of contracting the abovementioned diseases.
PLOS ONE | 2014
Massimo Marrelli; Stefano Gentile; Francesca Palmieri; Francesco Paduano; Marco Tatullo
Introduction In the present work we analyzed the hormonal (salivary Cortisol; sC), immune (salivary Immunoglobulin A; sIgA) and cardiovascular (Heart rate, HR, and systolic blood pressure, SBP) responses induced by stress conditions in oral surgeons, randomly recruited according to their expertise level. Materials and methods Each surgeon performed three different surgical procedures with increasing degrees of technical difficulty and under time-limited conditions, to assess whether these variants may influence the risks of stress-induced secondary hypertension among the involved health professionals. sC and sIgA samples and cardiovascular function measurements were taken up before, during, and two hours after every surgery. Salivary samples and cardiovascular measurements were taken also during non-surgical days, as baseline controls. Results We observed that more experienced surgeons showed a higher stress management ability compared to those with less experience or, generally, younger, which are more exposed to the risks of developing secondary hypertension. Nevertheless, indipendently of sex and experience, oral surgeons are constantly exposed to high risks of developing stress-related diseases. Conclusions On the basis of the issues addressed and the results obtained, we have highlighted the importance of the investigated stress biomarkers to monitor and to prevent stress-related pathologies among oral surgeons. This approach is aimed to emphasize the significance of these specific stress-biomarkers, which represent a powerful instrument to evaluate stress levels in oral surgeons, and that may help to reduce the most severe life-threatening risks to which they are daily exposed. In conclusion, final goal of this study is to suggest an useful guideline to monitor the stress levels of oral and maxillofacial surgeons in order to improve their quality of life, which is inevitably reflected on the quality of the performances provided and, finally, to prevent possible mistakes in their daily activities.
Frontiers in Physiology | 2014
Barbara Perniconi; Dario Coletti; Paola Aulino; Alessandra Costa; Paola Aprile; Luigi Santacroce; Ernesto Chiaravalloti; Laura Coquelin; Nathalie Chevallier; Laura Teodori; Sergio Adamo; Massimo Marrelli; Marco Tatullo
The extracellular matrix (ECM) of decellularized organs possesses the characteristics of the ideal tissue-engineering scaffold (i.e., histocompatibility, porosity, degradability, non-toxicity). We previously observed that the muscle acellular scaffold (MAS) is a pro-myogenic environment in vivo. In order to determine whether MAS, which is basically muscle ECM, behaves as a myogenic environment, regardless of its location, we analyzed MAS interaction with both muscle and non-muscle cells and tissues, to assess the effects of MAS on cell differentiation. Bone morphogenetic protein treatment of C2C12 cells cultured within MAS induced osteogenic differentiation in vitro, thus suggesting that MAS does not irreversibly commit cells to myogenesis. In vivo MAS supported formation of nascent muscle fibers when replacing a muscle (orthotopic position). However, heterotopically grafted MAS did not give rise to muscle fibers when transplanted within the renal capsule. Also, no muscle formation was observed when MAS was transplanted under the xiphoid process, in spite of the abundant presence of cells migrating along the laminin-based MAS structure. Taken together, our results suggest that MAS itself is not sufficient to induce myogenic differentiation. It is likely that the pro-myogenic environment of MAS is not strictly related to the intrinsic properties of the muscle scaffold (e.g., specific muscle ECM proteins). Indeed, it is more likely that myogenic stem cells colonizing MAS recognize a muscle environment that ultimately allows terminal myogenic differentiation. In conclusion, MAS may represent a suitable environment for muscle and non-muscle 3D constructs characterized by a highly organized structure whose relative stability promotes integration with the surrounding tissues. Our work highlights the plasticity of MAS, suggesting that it may be possible to consider MAS for a wider range of tissue engineering applications than the mere replacement of volumetric muscle loss.