Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Tilotta is active.

Publication


Featured researches published by Marco Tilotta.


International Journal of Immunopathology and Pharmacology | 2015

Anti-biofilm activity of pseudoalteromonas haloplanktis tac125 against staphylococcus epidermidis biofilm: Evidence of a signal molecule involvement?

Ermenegilda Parrilli; Rosanna Papa; Sara Carillo; Marco Tilotta; Angela Casillo; Filomena Sannino; Andrea Cellini; Marco Artini; Laura Selan; Maria Michela Corsaro; Maria Luisa Tutino

Staphylococcus epidermidis is recognized as cause of biofilm-associated infections and interest in the development of new approaches for S. epidermidis biofilm treatment has increased. In a previous paper we reported that the supernatant of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 presents an anti-biofilm activity against S. epidermidis and preliminary physico-chemical characterization of the supernatant suggested that this activity is due to a polysaccharide. In this work we further investigated the chemical nature of the anti-biofilm P. haloplanktis TAC125 molecule. The production of the molecule was evaluated in different conditions, and reported data demonstrated that it is produced in all P. haloplanktis TAC125 biofilm growth stages, also in minimal medium and at different temperatures. By using a surface coating assay, the surfactant nature of the anti-biofilm compound was excluded. Moreover, a purification procedure was set up and the analysis of an enriched fraction demonstrated that the anti-biofilm activity is not due to a polysaccharide molecule but that it is due to small hydrophobic molecules that likely work as signal. The enriched fraction was also used to evaluate the effect on S. epidermidis biofilm formation in dynamic condition by BioFlux system.


Frontiers in Microbiology | 2015

Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

Rosanna Papa; Laura Selan; Ermenegilda Parrilli; Marco Tilotta; Filomena Sannino; Georges Feller; Maria Luisa Tutino; Marco Artini

Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter, and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their use in combination with conventional antibiotics.


Frontiers in Cellular and Infection Microbiology | 2017

Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm

Angela Casillo; Rosanna Papa; Annarita Ricciardelli; Filomena Sannino; Marcello Ziaco; Marco Tilotta; Laura Selan; Gennaro Marino; Maria Michela Corsaro; Maria Luisa Tutino; Marco Artini; Ermenegilda Parrilli

Staphylococcus epidermidis is a harmless human skin colonizer responsible for ~20% of orthopedic device-related infections due to its capability to form biofilm. Nowadays there is an interest in the development of anti-biofilm molecules. Marine bacteria represent a still underexploited source of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. Previous results have demonstrated that the culture supernatant of Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 impairs the formation of S. epidermidis biofilm. Further, evidence supports the hydrophobic nature of the active molecule, which has been suggested to act as a signal molecule. In this paper we describe an efficient activity-guided purification protocol which allowed us to purify this anti-biofilm molecule and structurally characterize it by NMR and mass spectrometry analyses. Our results demonstrate that the anti-biofilm molecule is pentadecanal, a long-chain fatty aldehyde, whose anti-S. epidermidis biofilm activity has been assessed using both static and dynamic biofilm assays. The specificity of its action on S. epidermidis biofilm has been demonstrated by testing chemical analogs of pentadecanal differing either in the length of the aliphatic chain or in their functional group properties. Further, indications of the mode of action of pentadecanal have been collected by studying the bioluminescence of a Vibrio harveyi reporter strain for the detection of autoinducer AI-2 like activities. The data collected suggest that pentadecanal acts as an AI-2 signal. Moreover, the aldehyde metabolic role and synthesis in the Antarctic source strain has been investigated. To the best of our knowledge, this is the first report on the identification of an anti-biofilm molecule form from cold-adapted bacteria and on the action of a long-chain fatty aldehyde acting as an anti-biofilm molecule against S. epidermidis.


Biofouling | 2017

Hydrophobin coating prevents Staphylococcus epidermidis biofilm formation on different surfaces

Marco Artini; Paola Cicatiello; Annarita Ricciardelli; Rosanna Papa; Laura Selan; Principia Dardano; Marco Tilotta; Gianluca Vrenna; Maria Luisa Tutino; Paola Giardina; Ermenegilda Parrilli

Abstract Staphylococcus epidermidis is a significant nosocomial pathogen in predisposed hosts because of its capability of forming a biofilm on indwelling medical devices. The initial stage of biofilm formation has a key role in S. epidermidis abiotic surface colonization. Recently, many strategies have been developed to create new anti-biofilm surfaces able to control bacterial adhesion mechanisms. In this work, the self-assembled amphiphilic layers formed by two fungal hydrophobins (Vmh2 and Pac3) have proven to be able to reduce the biofilm formed by different strains of S. epidermidis on polystyrene surfaces. The reduction in the biofilm thickness on the coated surfaces and the preservation of cell vitality have been demonstrated through confocal laser scanning microscope analysis. Moreover, the anti-biofilm efficiency of the self-assembled layers on different medically relevant materials has also been demonstrated using a CDC biofilm reactor.


Eye & Contact Lens-science and Clinical Practice | 2015

Evaluation of contact lens multipurpose solutions on bacterial biofilm development.

Marco Artini; Andrea Cellini; Gian Luca Scoarughi; Rosanna Papa; Marco Tilotta; Stefano Palma; Laura Selan

Objectives: No sooner are contact lenses (CLs) inserted into the eyes than lipids, proteins, and glycoproteins rapidly accumulate on their surface, thus favoring the adhesion of commensal bacteria and biofilm formation. Infections may be caused by the proliferation of indigenous flora or other opportunistic pathogens. Our purpose was to evaluate the activity and the capacity of different CL solutions to interfere with the mechanisms of biofilm formation and stability and use of a system to study dynamically biofilm development. Methods: We evaluated the antibiofilm activity of three different multipurpose solutions (MPSs): Regard, Biotrue, and OPTI-FREE PureMoist on four bacterial species (Serratia marcescens, Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus). Static biofilm assay was first performed to analyze the effect of MPSs. Dynamic assays were performed with the BioFlux system to analyze the effect of the OxyChlorite solution Regard on the biofilm formation. Results: Our studies show that MPSs are able to completely inhibit biofilm formation of Staphylococcus species and of S. marcescens after only 4 hr of incubation. Moreover, a reduction of biofilm formation by Pseudomonas was noted. Best results on P. aeruginosa were obtained with Regard. Regard was also used for dynamic assay, revealing its ability to disaggregate the mature biofilm. Regard completely inhibited biofilm formation by S. epidermidis and slowed down biofilm development by P. aeruginosa. Conclusions: Our findings indicate that the CL solutions tested were all able to reduce biofilm formation. Furthermore, the BioFlux system was proven to be useful for the evaluation of the effectiveness of CL solutions against microbial biofilm formation.


Molecules | 2018

Antimicrobial and Antibiofilm Activity and Machine Learning Classification Analysis of Essential Oils from Different Mediterranean Plants against Pseudomonas aeruginosa

Marco Artini; Alexandros Patsilinakos; Rosanna Papa; Mijat Božović; Manuela Sabatino; Stefania Garzoli; Gianluca Vrenna; Marco Tilotta; Federico Pepi; Rino Ragno; Laura Selan

Pseudomonas aeruginosa is a ubiquitous organism and opportunistic pathogen that can cause persistent infections due to its peculiar antibiotic resistance mechanisms and to its ability to adhere and form biofilm. The interest in the development of new approaches for the prevention and treatment of biofilm formation has recently increased. The aim of this study was to seek new non-biocidal agents able to inhibit biofilm formation, in order to counteract virulence rather than bacterial growth and avoid the selection of escape mutants. Herein, different essential oils extracted from Mediterranean plants were analyzed for their activity against P. aeruginosa. Results show that they were able to destabilize biofilm at very low concentration without impairing bacterial viability. Since the action is not related to a bacteriostatic/bactericidal activity on P. aeruginosa, the biofilm change of growth in presence of the essential oils was possibly due to a modulation of the phenotype. To this aim, application of machine learning algorithms led to the development of quantitative activity–composition relationships classification models that allowed to direct point out those essential oil chemical components more involved in the inhibition of biofilm production. The action of selected essential oils on sessile phenotype make them particularly interesting for possible applications such as prevention of bacterial contamination in the community and in healthcare environments in order to prevent human infections. We assayed 89 samples of different essential oils as P. aeruginosa anti-biofilm. Many samples inhibited P. aeruginosa biofilm at concentrations as low as 48.8 µg/mL. Classification of the models was developed through machine learning algorithms.


Extremophiles | 2016

Large-scale biofilm cultivation of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 for physiologic studies and drug discovery

Ermenegilda Parrilli; Annarita Ricciardelli; Angela Casillo; Filomena Sannino; Rosanna Papa; Marco Tilotta; Marco Artini; Laura Selan; Maria Michela Corsaro; Maria Luisa Tutino

Microbial biofilms are mainly studied due to detrimental effects on human health but they are also well established in industrial biotechnology for the production of chemicals. Moreover, biofilm can be considered as a source of novel drugs since the conditions prevailing within biofilm can allow the production of specific metabolites. Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 when grown in biofilm condition produces an anti-biofilm molecule able to inhibit the biofilm of the opportunistic pathogen Staphylococcus epidermidis. In this paper we set up a P. haloplanktis TAC125 biofilm cultivation methodology in automatic bioreactor. The biofilm cultivation was designated to obtain two goals: (1) the scale up of cell-free supernatant production in an amount necessary for the anti-biofilm molecule/s purification; (2) the recovery of P. haloplanktis TAC125 cells grown in biofilm for physiological studies. We set up a fluidized-bed reactor fermentation in which floating polystyrene supports were homogeneously mixed, exposing an optimal air–liquid interface to let bacterium biofilm formation. The proposed methodology allowed a large-scale production of anti-biofilm molecule and paved the way to study differences between P. haloplanktis TAC125 cells grown in biofilm and in planktonic conditions. In particular, the modifications occurring in the lipopolysaccharide of cells grown in biofilm were investigated.


International Journal of Immunopathology and Pharmacology | 2014

Effect of betamethasone in combination with antibiotics on gram positive and gram negative bacteria.

Marco Artini; Rosanna Papa; Andrea Cellini; Marco Tilotta; Gaetano Barbato; Koverech A; Laura Selan

Betamethasone is an anti-inflammatory steroid drug used in cases of anaphylactic and allergic reactions, of Alzheimer and Addison diseases and in soft tissue injuries. It modulates gene expression for anti-inflammatory activity suppressing the immune system response. This latter effect might decrease the effectiveness of immune system response against microbial infections. Corticosteroids, in fact, mask some symptoms of infection and during their use superimposed infections may occur. Thus, the use of glucocorticoids in patients with sepsis remains extremely controversial. In this study we analyzed the in vitro effect of a commercial formulation of betamethasone (Bentelan) on several Gram positive and Gram negative bacteria of clinical relevance. It was found to be an inhibitor of the growth of most of the strains examined. Also the effect of betamethasone in combination with some classes of antibiotics was evaluated. Antibiotic-steroid combination therapy is, in such cases, superior to antibiotic-alone treatment to impair bacterial growths. Such effect was essentially not at all observable on Staphylococcus aureus or Coagulase Negative Staphylococci (CoNS).


International Journal of Immunopathology and Pharmacology | 2015

Adhesive behaviour and virulence of coagulase negative staphylococci isolated from Italian cheeses.

Marco Artini; Andrea Cellini; Rosanna Papa; Marco Tilotta; Gian Luca Scoarughi; Simona Gazzola; Cecilia Alejandra Fontana; Gianna Tempera; Pier Sandro Cocconcelli; Laura Selan

Coagulase-negative staphylococci (CoNS) belong to saprophytic microbiota on the skin and mucous membranes of warm-blooded animals and humans, but are also isolated from foodstuffs such as meat, cheese, and milk. In other circumstances, some CoNS can act as pathogens. Thus the presence of CoNS may not be an immediate danger to public health, but can become a risk factor. In particular antibiotic-resistant genes could be transferred to other potentially pathogenic microorganisms. Furthermore, CoNS are known to be strong biofilm producers and this is also a risk factor for public health. The aim of the present work was to determine the genotypic and phenotypic profiles of 106 CoNS belonging to four different species isolated from five different Italian cheeses for the presence of some adhesion and virulence features. In order to verify a possible correlation between the formation of biofilm and staphylococcal virulence factors, we checked the presence of adhesin genes by PCR and we investigated the ability of these strains to make biofilm at different temperatures. Furthermore, in some conditions, we analyzed surface proteins and autolytic pattern of selected strains. In conclusion, we checked the presence of norA and mecA genes responsible for fluoroquinolones and methicillin resistance, respectively. We found resistant genes in a proportion of the food isolates in amounts of 9.4% (mecA) and 5.7% (norA). These data support the importance to continuously examine the microbiota not only for the creation of a database but also to safeguard public health.


Microbial Pathogenesis | 2013

A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus.

Rosanna Papa; Marco Artini; Andrea Cellini; Marco Tilotta; Eugenio Galano; Pietro Pucci; Angela Amoresano; Laura Selan

Collaboration


Dive into the Marco Tilotta's collaboration.

Top Co-Authors

Avatar

Laura Selan

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Marco Artini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Rosanna Papa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Ermenegilda Parrilli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Filomena Sannino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Andrea Cellini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Maria Luisa Tutino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maria Michela Corsaro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Angela Casillo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge