Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Viceconti is active.

Publication


Featured researches published by Marco Viceconti.


Journal of Biomechanics | 1996

Mechanical validation of whole bone composite femur models.

Luca Cristofolini; Marco Viceconti; Angelo Cappello; Aldo Toni

Composite synthetic models of the human femur have recently become commercially available as substitutes for cadaveric specimens. Their quick diffusion was justified by the advantages they offer as a substitute for real femurs. The present investigation concentrated on an extensive experimental validation of the mechanical behaviour of the whole bone composite model, compared to human fresh-frozen and dried-rehydrated specimens for different loading conditions. First, the viscoelastic behaviour of the models was investigated under simulated single leg stance loading, showing that the little time dependent phenomena observed tend to extinguish within a few minutes of the load application. The behaviour under axial loading was then studied by comparing the vertical displacement of the head as well as the axial strains, by application of a parametric descriptive model of the strain distribution. Finally, a four point bending test and a torsional test were performed to characterize the whole bone stiffness of the femur. In all these tests, the composite femurs were shown to fall well within the range for cadaveric specimens, with no significant differences being detected between the synthetic femurs and the two groups of cadaveric femurs. Moreover, the interfemur variability for the composite femurs was 20-200 times lower than that for the cadaveric specimens, thus allowing smaller differences to be characterized as significant using the same simple size, if the composite femurs are employed.


Journal of Biomechanics | 2000

Large-sliding contact elements accurately predict levels of bone–implant micromotion relevant to osseointegration

Marco Viceconti; Roberto Muccini; Marek Bernakiewicz; Massimiliano Baleani; Luca Cristofolini

Primary stability is recognised as an important determinant in the aseptic loosening failure process of cementless implants. An accurate evaluation of the bone-implant relative micromotion is becoming important both in pre-clinical and clinical studies. If the biological threshold for micro-movements is in the range 100-200 micrometer then, in order to be discriminative, any method used to evaluate the primary stability should have an accuracy of 10-20 micrometer or better. Additionally, such method should also be able to report the relative micromotion at each point of the interface. None of the available experimental methods satisfies both requirements. Aim of the present study is to verify if any of the current finite element modelling techniques is sufficiently accurate in predicting the primary stability of a cementless prosthesis to be used to decide whether the micromotion may or may not jeopardise the implant osseointegration. The primary stability of an anatomic cementless stem, as measured in vitro, was used as a benchmark problem to comparatively evaluate different contact modelling techniques. Frictionless contact, frictional contact and press-fitted frictional contact conditions were modelled using alternatively node-to-node, node-to-face and face-to-face contact elements. The model based on face-to-face contact elements accounting for frictional contact and initial press-fit was able to predict the micromotion measured experimentally with an average (RMS) error of 10 micrometer and a peak error of 14 micrometer. All the other models presented errors higher than 20 micrometer assumed in the present study as an accuracy threshold.


Medical Engineering & Physics | 2004

An improved method for the automatic mapping of computed tomography numbers onto finite element models

Fulvia Taddei; Alberto Pancanti; Marco Viceconti

The assignment of bone tissue material properties is a fundamental step in the generation of subject-specific finite element models from computed tomography data. Aim of the present work is to investigate the influence of the material mapping algorithm on the results predicted by the finite element analysis. Two models, a coarse and a refined one, of a human ileum, femur and tibia, were generated from CT data and used for the tests. In addition a convergence analysis was carried out for the femur model, using six refinement levels, to verify whether the inclusion of the material properties would significantly alter the convergence behaviour of the mesh. The results showed that the choice of the mapping algorithm influences the material distribution. However, this did not always propagate into the finite element results. The difference between the maximum Von Mises stress remained always lower than 10%, apart one case when it reached the 13%. However, the global behaviour of the meshes showed more marked differences between the two algorithms: in the finer meshes of the two long bones 20-30% of the bone volume showed differences in the predicted Von Mises stresses greater than 10%. The convergence behaviour of the model was not worsened by the introduction of inhomogeneous material properties. The software was made available in the public domain.


Journal of Biomechanics | 2008

An accurate estimation of bone density improves the accuracy of subject-specific finite element models

Enrico Schileo; Enrico Dall’Ara; Fulvia Taddei; Andrea Malandrino; Tom Schotkamp; Massimiliano Baleani; Marco Viceconti

An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R(2)=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598+/-0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459+/-0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598+/-0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R(2)=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.


Medical Engineering & Physics | 1999

Material properties assignment to finite element models of bone structures: a new method

Cinzia Zannoni; Raffaella Mantovani; Marco Viceconti

Finite element analysis (FEA) is widely adopted to investigate the mechanical behaviour of bone structures. Computed tomography (CT) data are frequently used to generate FE models of bone. If properly calibrated, CT images are capable of providing accurate information about the bone morphology and tissue density. The aim of this work was to develop a special program able to read a CT data set as well as the FEA mesh generated from it, and to assign to each element of the mesh the material properties derived from the bone tissue density at the element location. The program was tested on phantom data sets and was adopted to evaluate the effects of the discrete description of the bone material properties. A three-dimensional FE model was generated automatically from a 16 bit CT data set of a distal femur acquired in vivo. The strain energy density (SED) was evaluated for each model element for increasing model complexity (number of different material cards assigned to the model). The computed SED were strongly dependent on the material mapping strategy.


Journal of Biomedical Materials Research | 1997

Fretting wear in a modular neck hip prosthesis

Marco Viceconti; Massimiliano Baleani; Stefano Squarzoni; Aldo Tonil

In vitro cyclic load fretting tests were conducted on a prototype of a cementless, modular neck, hip prosthesis. The study had three major objectives: to determine the amount of fretted material in the tapered-neck joint under various load cycle amplitudes, to determine the fretting damage evolution, and to determine the effect of different-sized stem bodies on the production of debris. All the tests produced some fretting microdamage on the tapered surface although the extent was quite different among test groups. The amount of abraded material increased almost linearly with the applied load magnitude but not with the number of load cycles. The amount of weight loss was higher in the large stem bodies than in the small ones. Weight loss ranged from 0.28 +/- 0.10 mg for small stem bodies loaded 5.5 million times up to 2300N to 2.54 +/- 0.53 mg for large stem bodies located 20 million times up to 3300N. Considering the large-size stem results, and assuming one million load cycles between 300N and 3300N to be the average yearly load history, the modular neck tapered joint would produce 0.6 mg/year of metal debris. The clinical impact of this observation is unknown; however, some of the literature on the presence of metal in patient tissues and fluids supports the hypothesis that a normal and stable prosthesis is likely to produce less than 10 mg/year of metal debris. Thus, a further production of 0.6 mg/year due to the modular neck should not have any significant effect.


Philosophical Transactions of the Royal Society A | 2010

A vision and strategy for the virtual physiological human in 2010 and beyond

Peter Hunter; Peter V. Coveney; Bernard de Bono; Vanessa Diaz; John Fenner; Alejandro F. Frangi; Peter C. Harris; Rod Hose; Peter Kohl; Patricia V. Lawford; Keith McCormack; Miriam Mendes; Stig W. Omholt; Alfio Quarteroni; John Skår; Jesper Tegnér; S. Randall Thomas; Ioannis G. Tollis; Ioannis Tsamardinos; Johannes H. G. M. van Beek; Marco Viceconti

European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also helping to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by framework 6 strategy for a European physiome (STEP) project in 2006. It is now time to assess the accomplishments of the last 2 years and update the STEP vision for the VPH. We consider the biomedical science, healthcare and information and communications technology challenges facing the project and we propose the VPH Institute as a means of sustaining the vision of VPH beyond the time frame of the NoE.


Journal of Biomedical Materials Research | 1996

Design-related fretting wear in modular neck hip prosthesis.

Marco Viceconti; O. Ruggeri; Aldo Toni; Armando Giunti

An accelerated cyclic loading corrosion test was used to determine the corrosion behavior of a commercial (GSP) and a prototype titanium hip prosthesis each with a modular neck. Four GSP and four prototype stems were subjected to a 2-Hz cyclic load ranging between 200 and 2,100 N for 1,000,000 cycles. Three stems were tested in an environment of FeCl3 solution, three stems were tested in Ringers solution, and two stems were tested in air. After cyclic loading, the specimens were carefully examined with optical and scanning electron microscopy (SEM). None of them showed macroscopic or microscopic signs of corrosion, regardless of the environment to which the specimens were subjected. However, macroscopic evidence of mechanical fretting was present at the neck-stem modular junction, primarily concentrated at the medial contact point between stem and neck, especially for the prototype stems. SEM analysis confirmed these observations. The appreciable differences observed between the two designs suggest that the problem can be minimized or eliminated with an accurately designed taper fitting.


Philosophical Transactions of the Royal Society A | 2008

The EuroPhysiome, STEP and a roadmap for the virtual physiological human.

John Fenner; Bindi S. Brook; Gordon J. Clapworthy; Peter V. Coveney; Véronique Feipel; H. Gregersen; D.R. Hose; Peter Kohl; Patricia V. Lawford; K.M. McCormack; D. Pinney; S.R. Thomas; S. Van Sint Jan; Sarah L. Waters; Marco Viceconti

Biomedical science and its allied disciplines are entering a new era in which computational methods and technologies are poised to play a prevalent role in supporting collaborative investigation of the human body. Within Europe, this has its focus in the virtual physiological human (VPH), which is an evolving entity that has emerged from the EuroPhysiome initiative and the strategy for the EuroPhysiome (STEP) consortium. The VPH is intended to be a solution to common infrastructure needs for physiome projects across the globe, providing a unifying architecture that facilitates integration and prediction, ultimately creating a framework capable of describing Homo sapiens in silico. The routine reliance of the biomedical industry, biomedical research and clinical practice on information technology (IT) highlights the importance of a tailor-made and robust IT infrastructure, but numerous challenges need to be addressed if the VPH is to become a mature technological reality. Appropriate investment will reap considerable rewards, since it is anticipated that the VPH will influence all sectors of society, with implications predominantly for improved healthcare, improved competitiveness in industry and greater understanding of (patho)physiological processes. This paper considers issues pertinent to the development of the VPH, highlighted by the work of the STEP consortium.


Clinical Biomechanics | 2008

The effects of embalming using a 4% formalin solution on the compressive mechanical properties of human cortical bone

Caroline Öhman; Enrico Dall’Ara; Massimiliano Baleani; Serge Van Sint Jan; Marco Viceconti

BACKGROUND The use of formalin fixed bone tissue is often avoided because of its assumed influence on the mechanical properties of bone. Fixed bone tissue would minimise biological risks and eliminate preservation issues for long duration experimental tests. This study aimed to determine the short- and long-term effects of embalming, using a solution with 4% formalin concentration, on the mechanical properties of human cortical bone. METHODS Three-millimetre cylindrical specimens of human cortical bone were extracted from two femoral diaphyses and divided in four groups. The first group was used as control, the remaining three groups were left in the embalming solution for 48 h, 4 week, and 8 week, respectively. Compressive mechanical properties, hardness and ash density were assessed. The last was used to check the homogeneity among the four groups. FINDINGS No significant differences were found among the four groups in yield stress, ultimate stress and hardness. The specimens stored for 8 week in the embalming solution had significant lower Youngs modulus (-24%), higher yield strain (+20%) and ultimate strain (+53%) compared to the other groups. INTERPRETATION On a short-term perspective, embalming did not affect the compressive mechanical properties, nor hardness of human cortical bone, whereas a long-term preservation (8 week) did significantly affect Youngs modulus, yield strain and ultimate strain in compression. Preserving bone segments for up to 4 week in an embalming solution with low formalin concentration seems to be an interesting alternative when collecting and/or managing fresh or fresh-frozen bone segments for biomechanical experiments is not possible.

Collaboration


Dive into the Marco Viceconti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldo Toni

University of Bologna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge Van Sint Jan

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge