Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Zangrando is active.

Publication


Featured researches published by Marco Zangrando.


Nature Photonics | 2012

Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet

E. Allaria; Roberto Appio; L.Badano; William A. Barletta; S.Bassanese; S. G. Biedron; A.O.Borga; E.Busetto; D. Castronovo; Paolo Cinquegrana; S. Cleva; D.Cocco; M.Cornacchia; P. Craievich; Ivan Cudin; G.D'Auria; M.Dal Forno; M.B. Danailov; R.De Monte; G.De Ninno; Paolo Delgiusto; Alexander Demidovich; S. Di Mitri; B. Diviacco; Alessandro Fabris; Riccardo Fabris; William M. Fawley; Mario Ferianis; Eugenio Ferrari; S.Ferry

Researchers demonstrate the FERMI free-electron laser operating in the high-gain harmonic generation regime, allowing high stability, transverse and longitudinal coherence and polarization control.


Journal of Synchrotron Radiation | 2015

The FERMI free-electron lasers

E. Allaria; L. Badano; S. Bassanese; Flavio Capotondi; D. Castronovo; Paolo Cinquegrana; M.B. Danailov; G. D'Auria; Alexander Demidovich; R. De Monte; G. De Ninno; S. Di Mitri; B. Diviacco; William M. Fawley; Mario Ferianis; Eugenio Ferrari; G. Gaio; D. Gauthier; L. Giannessi; F. Iazzourene; Gabor Kurdi; N. Mahne; I. Nikolov; F. Parmigiani; G. Penco; Lorenzo Raimondi; P. Rebernik; Fabio Rossi; Eléonore Roussel; C. Scafuri

FERMI is a seeded free-electron laser (FEL) facility located at the Elettra laboratory in Trieste, Italy, and is now in user operation with its first FEL line, FEL-1, covering the wavelength range between 100 and 20 nm. The second FEL line, FEL-2, a high-gain harmonic generation double-stage cascade covering the wavelength range 20-4 nm, has also completed commissioning and the first user call has been recently opened. An overview of the typical operating modes of the facility is presented.


Nature Communications | 2016

Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

Eugenio Ferrari; C. Spezzani; Franck Fortuna; Renaud Delaunay; F. Vidal; I. Nikolov; Paolo Cinquegrana; B. Diviacco; D. Gauthier; G. Penco; Primož Rebernik Ribič; Eléonore Roussel; Marco Trovò; J.-B. Moussy; Tommaso Pincelli; Lounès Lounis; Michele Manfredda; Emanuele Pedersoli; Flavio Capotondi; Cristian Svetina; N. Mahne; Marco Zangrando; Lorenzo Raimondi; Alexander Demidovich; L. Giannessi; Giovanni De Ninno; M.B. Danailov; E. Allaria; Maurizio Sacchi

The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.


Optics Express | 2013

Two-colour generation in a chirped seeded free-electron laser: a close look

Benoı̂t Mahieu; E. Allaria; D. Castronovo; M.B. Danailov; Alexander Demidovich; Giovanni De Ninno; Simone Di Mitri; William M. Fawley; Eugenio Ferrari; Lars Fröhlich; D. Gauthier; L. Giannessi; N. Mahne; G. Penco; Lorenzo Raimondi; S. Spampinati; C. Spezzani; Cristian Svetina; M. Trovo; Marco Zangrando

We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.


Journal of Synchrotron Radiation | 2015

EIS: the scattering beamline at FERMI

C. Masciovecchio; Andrea Battistoni; Erika Giangrisostomi; Filippo Bencivenga; Emiliano Principi; Riccardo Mincigrucci; Riccardo Cucini; Alessandro Gessini; Francesco D'Amico; Roberto Borghes; Milan Prica; Valentina Chenda; Martin Scarcia; G. Gaio; Gabor Kurdi; Alexander Demidovich; M.B. Danailov; Andrea Di Cicco; Adriano Filipponi; R. Gunnella; Keisuke Hatada; N. Mahne; Lorenzo Raimondi; Cristian Svetina; Roberto Godnig; A. Abrami; Marco Zangrando

The Elastic and Inelastic Scattering (EIS) beamline at the free-electron laser FERMI is presented. It consists of two separate end-stations: EIS-TIMEX, dedicated to ultrafast time-resolved studies of matter under extreme and metastable conditions, and EIS-TIMER, dedicated to time-resolved spectroscopy of mesoscopic dynamics in condensed matter. The scientific objectives are discussed and the instrument layout illustrated, together with the results from first exemplifying experiments.


Review of Scientific Instruments | 2011

Multipurpose modular experimental station for the DiProI beamline of Fermi@Elettra free electron laser.

Emanuele Pedersoli; Flavio Capotondi; Daniele Cocco; Marco Zangrando; Burkhard Kaulich; R.H. Menk; Andrea Locatelli; Tevfik Onur Menteş; Carlo Spezzani; Gilio Sandrin; Daniel M. Bacescu; M. Kiskinova; Sasa Bajt; Miriam Barthelmess; Anton Barty; Joachim Schulz; Lars Gumprecht; Henry N. Chapman; A. J. Nelson; Matthias Frank; Michael J. Pivovaroff; Bruce W. Woods; Michael J. Bogan; Janos Hajdu

We present a compact modular apparatus with a flexible design that will be operated at the DiProI beamline of the Fermi@Elettra free electron laser (FEL) for performing static and time-resolved coherent diffraction imaging experiments, taking advantage of the full coherence and variable polarization of the short seeded FEL pulses. The apparatus has been assembled and the potential of the experimental setup is demonstrated by commissioning tests with coherent synchrotron radiation. This multipurpose experimental station will be open to general users after installation at the Fermi@Elettra free electron laser in 2011.


Journal of Synchrotron Radiation | 2015

The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning

Cristian Svetina; Cesare Grazioli; N. Mahne; Lorenzo Raimondi; Claudio Fava; Marco Zangrando; Simone Gerusina; Michele Alagia; L. Avaldi; G. Cautero; Monica de Simone; Michele Devetta; Michele Di Fraia; Marcel Drabbels; Vitaliy Feyer; P. Finetti; R. Katzy; A. Kivimäki; V. Lyamayev; T. Mazza; Angelica Moise; T. Möller; Patrick O'Keeffe; Y. Ovcharenko; P. Piseri; Oksana Plekan; Kevin C. Prince; Rudi Sergo; F. Stienkemeier; Stefano Stranges

A description of the LDM beamline of FERMI is given, with a detailed description of the photon transport.


Proceedings of SPIE | 2011

Characterization of the FERMI@Elettra's on-line photon energy spectrometer

Cristian Svetina; A. Abrami; Ivan Cudin; Claudio Fava; Simone Gerusina; Riccardo Gobessi; Luca Rumiz; Giovanni Sostero; Marco Zangrando; Daniele Cocco

FERMI@Elettra is a Free Electron Laser (FEL) under commissioning at Sincrotrone Trieste. It will provide an almost fully coherent and transform limited radiation with a very high brilliance in the VUV/Soft X-ray range. This article describes the working principles of the Variable Line Spacing diffraction gratings applied to the photon energy spectrometer as well as the design concept, ray tracing and efficiency simulations. Metrological results at various spatial frequencies of the optics involved and the first characterization results with FEL radiation will be shown.


Nature Communications | 2016

Chirped pulse amplification in an extreme-ultraviolet free-electron laser

D. Gauthier; E. Allaria; M. Coreno; Ivan Cudin; Hugo Dacasa; M.B. Danailov; Alexander Demidovich; Simone Di Mitri; B. Diviacco; Eugenio Ferrari; P. Finetti; Fabio Frassetto; D. Garzella; S. Künzel; Vincent Leroux; B. Mahieu; N. Mahne; Michael Meyer; T. Mazza; Paolo Miotti; G. Penco; Lorenzo Raimondi; Primož Rebernik Ribič; R. Richter; Eléonore Roussel; Sebastian Schulz; Luca Sturari; Cristian Svetina; M. Trovo; Paul Andreas Walker

Chirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences. This demand was satisfied by the advent of short-wavelength free-electron lasers. However, for any given free-electron laser setup, a limit presently exists in the generation of ultra-short pulses carrying substantial energy. Here we present the experimental implementation of chirped pulse amplification on a seeded free-electron laser in the extreme-ultraviolet, paving the way to the generation of fully coherent sub-femtosecond gigawatt pulses in the water window (2.3–4.4 nm).


Journal of Synchrotron Radiation | 2015

Multipurpose end-station for coherent diffraction imaging and scattering at FERMI@Elettra free-electron laser facility

Flavio Capotondi; Emanuele Pedersoli; Filippo Bencivenga; Michele Manfredda; N. Mahne; Lorenzo Raimondi; Cristian Svetina; Marco Zangrando; Alexander Demidovich; I. Nikolov; M.B. Danailov; C. Masciovecchio; M. Kiskinova

The Diffraction and Projection Imaging (DiProI) beamline at FERMI, the Elettra free-electron laser (FEL), hosts a multi-purpose station that has been opened to users since the end of 2012. This paper describes the core capabilities of the station, designed to make use of the unique features of the FERMI-FEL for performing a wide range of static and dynamic scattering experiments. The various schemes for time-resolved experiments, employing both soft X-ray FEL and seed laser IR radiation are presented by using selected recent results. The ongoing upgrade is adding a reflection geometry setup for scattering experiments, expanding the application fields by providing both high lateral and depth resolution.

Collaboration


Dive into the Marco Zangrando's collaboration.

Top Co-Authors

Avatar

Lorenzo Raimondi

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

N. Mahne

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Cristian Svetina

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Flavio Capotondi

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

M.B. Danailov

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Allaria

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Eugenio Ferrari

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Emanuele Pedersoli

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

B. Diviacco

Elettra Sincrotrone Trieste

View shared research outputs
Researchain Logo
Decentralizing Knowledge