Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcos A. Neves is active.

Publication


Featured researches published by Marcos A. Neves.


Advanced Drug Delivery Reviews | 2013

Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery

Goran T. Vladisavljevic; Nauman Khalid; Marcos A. Neves; Takashi Kuroiwa; Mitsutoshi Nakajima; Kunihiko Uemura; Sosaku Ichikawa; Isao Kobayashi

Microfluidics is an emerging and promising interdisciplinary technology which offers powerful platforms for precise production of novel functional materials (e.g., emulsion droplets, microcapsules, and nanoparticles as drug delivery vehicles- and drug molecules) as well as high-throughput analyses (e.g., bioassays, detection, and diagnostics). In particular, multiphase microfluidics is a rapidly growing technology and has beneficial applications in various fields including biomedicals, chemicals, and foods. In this review, we first describe the fundamentals and latest developments in multiphase microfluidics for producing biocompatible materials that are precisely controlled in size, shape, internal morphology and composition. We next describe some microfluidic applications that synthesize drug molecules, handle biological substances and biological units, and imitate biological organs. We also highlight and discuss design, applications and scale up of droplet- and flow-based microfluidic devices used for drug discovery and delivery.


Brazilian Archives of Biology and Technology | 2006

Production of alcohol by simultaneous saccharification and fermentation of low-grade wheat flour

Marcos A. Neves; Toshinori Kimura; Naoto Shimizu; Kiwamu Shiiba

Two samples of low-grade wheat flour, namely low-grade 1 (LG1) and low-grade 2 (LG2), with different carbohydrate and fibrous content, were used as substrates. The samples were liquefied using various concentrations of a- or b-amylase, in order to optimize the production of fermentable sugars; the enzyme a-amylase revealed higher performance. After liquefaction, the simultaneous saccharification and fermentation was conducted in a jar fermentor. Amyloglucosidase was used for saccharification, and dry bakers yeast, S. cerevisiae, for fermentation simultaneously. Glucose was consumed promptly in both cases, LG1 and LG2; ethanol production was considerably higher in LG1 (38.6 g/L), compared to LG2 (24.9 g/L). The maximum ATP production was observed early in the SSF process. LG1 revealed higher potential as substrate for ethanol production.


Bioscience, Biotechnology, and Biochemistry | 2013

Preparation and Characterization of Water-in-Oil-in-Water Emulsions Containing a High Concentration of L-Ascorbic Acid

Nauman Khalid; Isao Kobayashi; Marcos A. Neves; Kunihiko Uemura; Mitsutoshi Nakajima

This study sought to encapsulate a high concentration of L-ascorbic acid, up to 30% (w/v), in the inner aqueous phase of water-in-oil-water (W/O/W) emulsions with soybean oil as the oil phase. Two-step homogenization was conducted to prepare W/O/W emulsions stabilized by a hydrophobic emulsifier and 30% (v/v) of W/O droplets stabilized by a hydrophilic emulsifier. First-step homogenization prepared W/O emulsions with an average aqueous droplet diameter of 2.0 to 3.0 μm. Second-step homogenization prepared W/O/W emulsions with an average W/O droplet diameter of 14 to 18 μm and coefficients of variation (CVs) of 18% to 25%. The results indicated that stable W/O/W emulsions containing a high concentration of L-ascorbic acid were obtained by adding gelatin and magnesium sulfate in the inner aqueous phase and glucose in both aqueous phases. L-Ascorbic acid retention in the W/O/W emulsions was 40% on day 30 and followed first-order kinetics.


Food Research International | 2016

Formulation and stability assessment of ergocalciferol loaded oil-in-water nanoemulsions: Insights of emulsifiers effect on stabilization mechanism

Gaofeng Shu; Nauman Khalid; Yiguo Zhao; Marcos A. Neves; Isao Kobayashi; Mitsutoshi Nakajima

In the study, we investigated the effect of emulsifiers with different stabilizing mechanisms on the formulation and stability of ergocalciferol loaded oil-in-water (O/W) emulsions. O/W emulsion stabilized by modified lecithin (ML; electrostatic stabilization), sodium caseinate (SC; electrosteric stabilization) or decaglycerol monooleate (MO-7S; steric stabilization) were formulated using high-pressure homogenization. The Sauter mean diameter (d3,2) of emulsions produced by ML, SC and MO-7S were 126±1, 127±4 and 138±3nm, respectively. The stability of resulting emulsions was evaluated when they exposed to different environmental stresses and during 30days of storage at 25 and 55°C. Results showed that the emulsions prepared by MO-7S or ML were stable against a wide range of pH (2-8), while SC-stabilized emulsions showed instability with extensive droplet aggregation at pH4 or and 5. Only ML-stabilized emulsions showed droplet growth due to coalescence when treated at high NaCl concentration (300-500mM). In the absence of glucose, SC-stabilized O/W emulsions showed better freeze-thaw stability, in comparison to those formed with ML or MO-7S emulsifiers. The emulsion produced by ML was found to be stable to droplet aggregation at heating temperatures (80-120°C) for 1h. All the O/W emulsions stored at 25°C showed good physical and chemical stability. However, the chemical stability of ergocalciferol in emulsion system decreased in order of ML>MO-7S≫SC during storage at 55°C for a period of 30days. These findings provide valuable information for the development of nanoemulsion-based delivery system applied in food and beverage products.


RSC Advances | 2015

Formulation characteristics of triacylglycerol oil-in-water emulsions loaded with ergocalciferol using microchannel emulsification

Nauman Khalid; Isao Kobayashi; Zheng Wang; Marcos A. Neves; Kunihiko Uemura; Mitsutoshi Nakajima; Hiroshi Nabetani

Ergocalciferol is one important form of vitamin D that is needed for proper functioning of the human metabolic system. The study formulates monodisperse food grade ergocalciferol loaded oil-in-water (O/W) emulsions by microchannel emulsification (MCE). The primary characterization was performed with grooved MCE, while the storage stability and encapsulating efficiency (EE) were investigated with straight-through MCE. The grooved microchannel (MC) array plate has 5 × 18 μm MCs, while the asymmetric straight-through MC array plate consists of numerous 10 × 80 μm microslots each connected to a 10 μm diameter circular MC. Ergocalciferol at a concentration of 0.2–1.0% (w/w) was added to various oils and served as the dispersed phase, while the continuous phase constituted either of 1% (w/w) Tween 20, decaglycerol monolaurate (Sunsoft A-12) or β-lactoglobulin. The primary characterization indicated successful emulsification in the presence of 1% (w/w) Tween 20 or Sunsoft A-12. The average droplet diameter increased slowly with the increasing concentration of ergocalciferol and ranged from 28.3 to 30.0 μm with a coefficient of variation below 6.0%. Straight-through MCE was conducted with 0.5% (w/w) ergocalciferol in soybean oil together with 1% (w/w) Tween 20 in Milli-Q water as the optimum dispersed and continuous phases. Monodisperse O/W emulsions with a Sauter mean diameter (d3,2) of 34 μm with a relative span factor of less than 0.2 were successfully obtained from straight-through MCE. The resultant oil droplets were physically stable for 15 days (d) at 4 °C without any significant increase in d3,2. The monodisperse O/W emulsions exhibited an ergocalciferol EE of more than 75% during the storage period.


Bioscience, Biotechnology, and Biochemistry | 2015

Monodisperse aqueous microspheres encapsulating high concentration of l-ascorbic acid: insights of preparation and stability evaluation from straight-through microchannel emulsification

Nauman Khalid; Isao Kobayashi; Marcos A. Neves; Kunihiko Uemura; Mitsutoshi Nakajima; Hiroshi Nabetani

Stabilization of l-ascorbic acid (l-AA) is a challenging task for food and pharmaceutical industries. The study was conducted to prepare monodisperse aqueous microspheres containing enhanced concentrations of l-AA by using microchannel emulsification (MCE). The asymmetric straight-through microchannel (MC) array used here constitutes 11 × 104 μm microslots connected to a 10 μm circular microholes. 5–30% (w/w) l-AA was added to a Milli-Q water solution containing 2% (w/w) sodium alginate and 1% (w/w) magnesium sulfate, while the continuous phase constitutes 5% (w/w) tetraglycerol condensed ricinoleate in water-saturated decane. Monodisperse aqueous microspheres with average diameters (dav) of 18.7–20.7 μm and coefficients of variation (CVs) below 6% were successfully prepared via MCE regardless of the l-AA concentrations applied. The collected microspheres were physically stable in terms of their dav and CV for >10 days of storage at 40°C. The aqueous microspheres exhibited l-AA encapsulation efficiency exceeding 70% during the storage. Straight-through microchannel emulsification has ability to produce monodisperse emulsions. l-AA is encapsulated in aqueous microspheres and has encapsulation efficiency of over 70% after 10 days of storage at 40oC.


Journal of Agricultural and Food Chemistry | 2012

Antiallergic Effect of Picholine Olive Oil-in-Water Emulsions through β-Hexosaminidase Release Inhibition and Characterization of Their Physicochemical Properties

Hiroko Isoda; Hideko Motojima; Delphine Margout; Marcos A. Neves; Junkyu Han; Mitsutoshi Nakajima; Michel Larroque

The inhibitory effect of Picholine olive oil from Montpellier in Southern France on the chemical mediator release in type I allergy, using rat basophilic leukemia (RBL-2H3) cells, was investigated. Oil-in-water (O/W) emulsions prepared using Picholine olive oil showed an inhibitory effect on the chemical mediator release and decreased expressions of genes related to type I allergy in RBL-2H3 cells. We then measured the phenolic compounds present in Picholine olive oil using high-performance liquid chromatography and investigated some physical properties, such as droplet size, size distribution, viscosity, and surface tension of the resulting olive O/W emulsions. Our findings indicate that Picholine olive oil has high flavonoids content, especially apigenin, and the prepared emulsion of Picholine olive oil resulted in a considerable small size distribution, with an average droplet size of 170 nm.


Green Processing and Synthesis | 2012

Large microchannel emulsification device for mass producing uniformly sized droplets on a liter per hour scale

Isao Kobayashi; Marcos A. Neves; Yoshihiro Wada; Kunihiko Uemura; Mitsutoshi Nakajima

Abstract We report the mass production of uniformly sized droplets on a liter per hour scale using a large microchannel (MC) emulsification device developed in this study. This MC emulsification device includes a newly designed 40×40-mm silicon MC array chip with 24,772 asymmetric MCs, each consisting of a circular microhole (17-μm diameter and 200-μm depth) and a microslot (17×119-μm cross-section and 60-μm depth). The oil-in-water (O/W) system was composed of n-tetradecane as the dispersed phase and a Milli-Q water solution containing 2.0 wt% Tween-20 as the continuous phase. The MC emulsification results demonstrated the stable mass production of uniformly sized oil droplets with average diameters of 87 μm and coefficients of variation below 2% over a wide range of volumetric flow rates of the dispersed phase up to 1.4 l/h. Analyses of shear stress at the chip surface and droplet generation via an asymmetric MC verified that the resultant droplet size and size distribution was not influenced by the volumetric flow rate of each phase. The large MC emulsification device has a potential droplet productivity exceeding several tons per year, which could satisfy a minimum industrial-scale production of monodisperse microdispersions containing emulsion droplets, microparticles, and microcapsules.


Food Chemistry | 2016

Microchannel emulsification study on formulation and stability characterization of monodisperse oil-in-water emulsions encapsulating quercetin

Nauman Khalid; Isao Kobayashi; Marcos A. Neves; Kunihiko Uemura; Mitsutoshi Nakajima; Hiroshi Nabetani

The study used microchannel emulsification (MCE) to encapsulate quercetin in food grade oil-in-water (O/W) emulsions. A silicon microchannel plate (Model WMS 1-2) comprised of 10,300 discrete 10×104μm microslots was connected to a circular microhole with an inner diameter of 10μm. 1% (w/w) Tween 20 was used as optimized emulsifier in Milli-Q water, while 0.4mgml(-1) quercetin in different oils served as a dispersed phase. The MCE was carried by injecting the dispersed phase at 2mlh(-1). Successful emulsification was conducted below the critical dispersed phase flux, with a Sauter mean diameter of 29μm and relative span factor below 0.25. The O/W emulsions remained stable in terms of droplet coalescence at 4 and 25°C for 30days. The encapsulation efficiency of quercetin in the O/W emulsions was 80% at 4°C and 70% at 25°C during the evaluated storage period.


Food and Bioprocess Technology | 2017

Emerging Technologies for Recovery of Value-Added Components from Olive Leaves and Their Applications in Food/Feed Industries

Safa Souilem; Ines Fki; Isao Kobayashi; Nauman Khalid; Marcos A. Neves; Hiroko Isoda; Sami Sayadi; Mitsutoshi Nakajima

Olive leaves are the most abundant agricultural waste source rich in polyphenolics. Due to the numerous health benefits associated with these compounds, the interest in recovering polyphenols from olive leaves has increased in the scientific community over the last decade. Recent studies have focused on improved extraction techniques and processing methods that are most suited for agro-biological industries involved in the development of nutraceutical and functional products. The major problems in olive leaves processing include bitter taste and the low stability of various phenolic compounds. Oleuropein and hydroxytyrosol are the most important phenolic compounds extracted from olive leaves. The present review highlights the importance of olive leaves, their composition, preparation methods, major phenolic compounds, and commercial applications. This review article focuses on integrating studies on olive leaf extract (OLE) pertinent to nutrition, health, and beauty. The different board categories of delivery systems available for the encapsulation of OLE are given. These novel delivery systems could improve fortification, supplementation, and dietary diversification in food and pharmaceutical products.

Collaboration


Dive into the Marcos A. Neves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isao Kobayashi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Kunihiko Uemura

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge