Marcos Catanho
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcos Catanho.
Memorias Do Instituto Oswaldo Cruz | 1998
Elisa Cupolillo; Luiza de Oliveira Ramos Pereira; Octavio Fernandes; Marcos Catanho; Júlio C. Pereira; Enrique Medina-Acosta; Gabriel Grimaldi
Striking similarities at the morphological, molecular and biological levels exist between many trypanosomatids isolated from sylvatic insects and/or vertebrate reservoir hosts that make the identification of medically important parasites demanding. Some molecular data have pointed to the relationship between some Leishmania species and Endotrypanum, which has an important epidemiological significance and can be helpful to understand the evolution of those parasites. In this study, we have demonstrated a close genetic relationship between Endotrypanum and two new leishmanial species, L. (V.) colombiensis and L. (V.) equatorensis. We have used (a) numerical zymotaxonomy and (b) the variability of the internal transcribed spacers of the rRNA genes to examine relationships in this group. The evolutionary trees obtained revealed high genetic similarity between L. (V.) colombiensis, L. (V.) equatorensis and Endotrypanum, forming a tight cluster of parasites. Based on further results of (c) minicircle kDNA heterogeneity analysis and (d) measurement of the sialidase activity these parasites were also grouped together.
Parasites & Vectors | 2015
Cristina Henriques; Megan P. Miller; Marcos Catanho; Tecia Maria Ulisses de Carvalho; Marco A. Krieger; Christian Macagnan Probst; Wanderley de Souza; Wim Degrave; Susan G. Amara
BackgroundTrypanosoma cruzi, the etiological agent of Chagas disease, is auxotrophic for arginine. It obtains this amino acid from the host through transporters expressed on the plasma membrane and on the membranes of intracellular compartments. A few cationic amino acid transporters have been characterized at the molecular level, such as the novel intracellular arginine/ornithine transporter, TcCAT1.1, a member of the TcCAT subfamily that is composed of four almost identical open reading frames in the T. cruzi genome.MethodsThe functional characterization of the TcCAT1.1 isoform was performed in two heterologous expression systems. TcCAT subfamily expression was evaluated by real-time PCR in polysomal RNA fractions, and the cellular localization of TcCAT1.1 fused to EGFP was performed by confocal and immunoelectron microscopy.ResultsIn the S. cerevisiae expression system, TcCAT1.1 showed high affinity for arginine (Km = 0.085 ± 0.04 mM) and low affinity for ornithine (Km = 1.7 ± 0.2 mM). Xenopus laevis oocytes expressing TcCAT1.1 showed a 7-fold increase in arginine uptake when they were pre-loaded with arginine, indicating that transport is enhanced by substrates on the trans side of the membrane (trans-stimulation). Oocytes that were pre-loaded with [3H]-arginine displayed a 16-fold higher efflux of [3H]-arginine compared with that of the control. Analysis of polysomal RNA fractions demonstrated that the expression of members of the arginine transporter TcCAT subfamily is upregulated under nutritional stress and that this upregulation precedes metacyclogenesis. To investigate the cellular localization of the transporter, EGFP was fused to TcCAT1.1, and fluorescence microscopy and immunocytochemistry revealed the intracellular labeling of vesicles in the anterior region, in a network of tubules and vesicles.ConclusionsTcCAT1.1 is a novel arginine/ornithine transporter, an exchanger expressed in intracellular compartments that is physiologically involved in arginine homeostasis throughout the T. cruzi life cycle. The properties and estimated kinetic parameters of TcCAT1.1 can be extended to other members of the TcCAT subfamily.
Genome Biology and Evolution | 2017
Rafael Mina Piergiorge; Antonio Basílio de Miranda; Ana Carolina Ramos Guimarães; Marcos Catanho
Abstract Since enzymes catalyze almost all chemical reactions that occur in living organisms, it is crucial that genes encoding such activities are correctly identified and functionally characterized. Several studies suggest that the fraction of enzymatic activities in which multiple events of independent origin have taken place during evolution is substantial. However, this topic is still poorly explored, and a comprehensive investigation of the occurrence, distribution, and implications of these events has not been done so far. Fundamental questions, such as how analogous enzymes originate, why so many events of independent origin have apparently occurred during evolution, and what are the reasons for the coexistence in the same organism of distinct enzymatic forms catalyzing the same reaction, remain unanswered. Also, several isofunctional enzymes are still not recognized as nonhomologous, even with substantial evidence indicating different evolutionary histories. In this work, we begin to investigate the biological significance of the cooccurrence of nonhomologous isofunctional enzymes in human metabolism, characterizing functional analogous enzymes identified in metabolic pathways annotated in the human genome. Our hypothesis is that the coexistence of multiple enzymatic forms might not be interpreted as functional redundancy. Instead, these enzymatic forms may be implicated in distinct (and probably relevant) biological roles.
Bioinformatics | 2010
Thomas D. Otto; Marcos Catanho; Cristian Tristão; Márcia Bezerra; Renan Mathias Fernandes; Guilherme Steinberger Elias; Alexandre Capeletto Scaglia; Bill Bovermann; Viktors Berstis; Sérgio Lifschitz; Antonio Basílio de Miranda; Wim Degrave
Motivation: Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith–Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid™, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. Availability: The database can be accessed through http://proteinworlddb.org Contact: [email protected]
Memorias Do Instituto Oswaldo Cruz | 2018
Melise Chaves Silveira; Marcos Catanho; Antonio Basílio de Miranda
β-lactamases, which are found in several bacterial species and environments, are the main cause of resistance to β-lactams in Gram-negative bacteria. In 2009, a protein (LRA-13) with two β-lactamase domains (one class C domain and one class D domain) was experimentally characterised, and an extended action spectrum against β-lactams consistent with two functional domains was found. Here, we present the results of searches in the non-redundant NCBI protein database that revealed the existence of a group of homologous bifunctional β-lactamases in the genomes of environmental bacteria. These findings suggest that bifunctional β-lactamases are widespread in nature; these findings also raise concern that bifunctional β-lactamases may be transferred to bacteria of clinical importance through lateral gene transfer mechanisms.
Memorias Do Instituto Oswaldo Cruz | 2018
Edson Machado; Sidra Ezidio Gonçalves Vasconcellos; Camillo Cerdeira; Lia Lima Gomes; Ricardo Magrani Junqueira; Luciana Distásio de Carvalho; Jesus Pais Ramos; Paulo Redner; Carlos Eduardo Dias Campos; Paulo Cesar de Souza Caldas; Ana Paula Chaves Sobral Gomes; Telma Goldenberg; Fátima Cristina Onofre Fandinho Montes; Fernanda Carvalho de Queiroz Mello; Vinicius de Oliveira Mussi; Elena B. Lasunskaia; Dick van Soolingen; Antonio Basílio de Miranda; Leen Rigouts; Bouke C. de Jong; Conor J. Meehan; Marcos Catanho; Philip Noel Suffys
Mycobacterium kansasii is an opportunistic pathogen and one of the most commonly encountered species in individuals with lung disease. We here report the complete genome sequence of 12 clinical isolates of M. kansasii from patients with pulmonary disease in Brazil.
Evolutionary Bioinformatics | 2018
Melise Chaves Silveira; Rangeline Azevedo da Silva; Fabio Faria da Mota; Marcos Catanho; Rodrigo Jardim; Ana Carolina Ramos Guimarães; Antonio Basílio de Miranda
β-lactamases, the enzymes responsible for resistance to β-lactam antibiotics, are widespread among prokaryotic genera. However, current β-lactamase classification schemes do not represent their present diversity. Here, we propose a workflow to identify and classify β-lactamases. Initially, a set of curated sequences was used as a model for the construction of profiles Hidden Markov Models (HMM), specific for each β-lactamase class. An extensive, nonredundant set of β-lactamase sequences was constructed from 7 different resistance proteins databases to test the methodology. The profiles HMM were improved for their specificity and sensitivity and then applied to fully assembled genomes. Five hierarchical classification levels are described, and a new class of β-lactamases with fused domains is proposed. Our profiles HMM provide a better annotation of β-lactamases, with classes and subclasses defined by objective criteria such as sequence similarity. This classification offers a solid base to the elaboration of studies on the diversity, dispersion, prevalence, and evolution of the different classes and subclasses of this critical enzymatic activity.
Archive | 2013
Marcos Catanho; Antonio Basílio de Miranda
Since its creation in the middle of the 20th century, the Internet has become the universal language of the digital world. All the capabilities it offers, such as electronic mail systems, information distribution, file sharing, multimedia streaming services and online social networking, have already been of service to billions of people around the world. In fact, if the Internet were to disappear tomorrow, most people would struggle to manage their lives without it.
brazilian symposium on bioinformatics | 2012
Sérgio Lifschitz; Carlos Juliano Moura Viana; Cristian Tristão; Marcos Catanho; Wim Degrave; Antonio Basílio de Miranda; Márcia Bezerra; Thomas D. Otto
This work involves the comparison of protein information in a genomic scale. The main goal is to improve the quality and interpretation of biological data, besides our understanding of biological systems and their interactions. Stringent comparisons were obtained after the application of the Smith-Waterman algorithm in a pair wise manner to all predicted proteins encoded in both completely sequenced and unfinished genomes available in the public database RefSeq. Comparisons were run through a computational grid and the complete result reaches a volume of over 900 GB. Consequently, the database system design is a critical step in order to store and manage the information from comparisons’ results. This paper describes database conceptual design issues for the creation of a database that represents a data set of protein sequence cross-comparisons. We show that our conceptual schema and its relational mapping enables users to extract relevant information, from simple to complex queries integrating distinct data sources.
Journal of Clinical Microbiology | 1999
Claude Pirmez; Valéria da Silva Trajano; Manoel Paes-Oliveira Neto; Alda Maria Da-Cruz; Sylvio Celso Gonçalves-da-Costa; Marcos Catanho; Wim Degrave; Octavio Fernandes