Marcos Fernandez-Callejo
Pompeu Fabra University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcos Fernandez-Callejo.
Nature | 2013
Javier Prado-Martinez; Peter H. Sudmant; Jeffrey M. Kidd; Heng Li; Joanna L. Kelley; Belen Lorente-Galdos; Krishna R. Veeramah; August E. Woerner; Timothy D. O’Connor; Gabriel Santpere; Alexander Cagan; Christoph Theunert; Ferran Casals; Hafid Laayouni; Kasper Munch; Asger Hobolth; Anders E. Halager; Maika Malig; Jessica Hernandez-Rodriguez; Irene Hernando-Herraez; Kay Prüfer; Marc Pybus; Laurel Johnstone; Michael Lachmann; Can Alkan; Dorina Twigg; Natalia Petit; Carl Baker; Fereydoun Hormozdiari; Marcos Fernandez-Callejo
Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria–Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.
Nature | 2014
Iñigo Olalde; Morten E. Allentoft; Federico Sánchez-Quinto; Gabriel Santpere; Charleston W. K. Chiang; Michael DeGiorgio; Javier Prado-Martinez; Juan Antonio Rodríguez; Simon Rasmussen; Javier Quilez; Oscar Ramirez; Urko M. Marigorta; Marcos Fernandez-Callejo; María E. Prada; Julio Manuel Vidal Encinas; Rasmus Nielsen; Mihai G. Netea; John Novembre; Richard A. Sturm; Pardis C. Sabeti; Tomas Marques-Bonet; Arcadi Navarro; Carles Lalueza-Fox
Ancient genomic sequences have started to reveal the origin and the demographic impact of farmers from the Neolithic period spreading into Europe. The adoption of farming, stock breeding and sedentary societies during the Neolithic may have resulted in adaptive changes in genes associated with immunity and diet. However, the limited data available from earlier hunter-gatherers preclude an understanding of the selective processes associated with this crucial transition to agriculture in recent human evolution. Here we sequence an approximately 7,000-year-old Mesolithic skeleton discovered at the La Braña-Arintero site in León, Spain, to retrieve a complete pre-agricultural European human genome. Analysis of this genome in the context of other ancient samples suggests the existence of a common ancient genomic signature across western and central Eurasia from the Upper Paleolithic to the Mesolithic. The La Braña individual carries ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated with pathogen resistance in modern Europeans were already present in this hunter-gatherer.
Nature | 2014
Lucia Carbone; R. Alan Harris; Sante Gnerre; Krishna R. Veeramah; Belen Lorente-Galdos; John Huddleston; Thomas J. Meyer; Javier Herrero; Christian Roos; Bronwen Aken; Fabio Anaclerio; Nicoletta Archidiacono; Carl Baker; Daniel Barrell; Mark A. Batzer; Kathryn Beal; Antoine Blancher; Craig Bohrson; Markus Brameier; Michael S. Campbell; Claudio Casola; Giorgia Chiatante; Andrew Cree; Annette Damert; Pieter J. de Jong; Laura Dumas; Marcos Fernandez-Callejo; Paul Flicek; Nina V. Fuchs; Ivo Gut
Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.
PLOS Genetics | 2013
Irene Hernando-Herraez; Javier Prado-Martinez; Paras Garg; Marcos Fernandez-Callejo; Holger Heyn; Christina Hvilsom; Arcadi Navarro; Manel Esteller; Andrew J. Sharp; Tomas Marques-Bonet
DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, gorilla and orangutan) using Illumina Methylation450 bead arrays. Our analysis identified ∼800 genes with significantly altered methylation patterns among the great apes, including ∼170 genes with a methylation pattern unique to human. Some of these are known to be involved in developmental and neurological features, suggesting that epigenetic changes have been frequent during recent human and primate evolution. We identified a significant positive relationship between the rate of coding variation and alterations of methylation at the promoter level, indicative of co-occurrence between evolution of protein sequence and gene regulation. In contrast, and supporting the idea that many phenotypic differences between humans and great apes are not due to amino acid differences, our analysis also identified 184 genes that are perfectly conserved at protein level between human and chimpanzee, yet show significant epigenetic differences between these two species. We conclude that epigenetic alterations are an important force during primate evolution and have been under-explored in evolutionary comparative genomics.
Nucleic Acids Research | 2015
Irene Hernando-Herraez; Holger Heyn; Marcos Fernandez-Callejo; Enrique Vidal; Hugo Fernández-Bellon; Javier Prado-Martinez; Andrew J. Sharp; Manel Esteller; Tomas Marques-Bonet
Despite the increasing knowledge about DNA methylation, the understanding of human epigenome evolution is in its infancy. Using whole genome bisulfite sequencing we identified hundreds of differentially methylated regions (DMRs) in humans compared to non-human primates and estimated that ∼25% of these regions were detectable throughout several human tissues. Human DMRs were enriched for specific histone modifications and the majority were located distal to transcription start sites, highlighting the importance of regions outside the direct regulatory context. We also found a significant excess of endogenous retrovirus elements in human-specific hypomethylated. We reported for the first time a close interplay between inter-species genetic and epigenetic variation in regions of incomplete lineage sorting, transcription factor binding sites and human differentially hypermethylated regions. Specifically, we observed an excess of human-specific substitutions in transcription factor binding sites located within human DMRs, suggesting that alteration of regulatory motifs underlies some human-specific methylation patterns. We also found that the acquisition of DNA hypermethylation in the human lineage is frequently coupled with a rapid evolution at nucleotide level in the neighborhood of these CpG sites. Taken together, our results reveal new insights into the mechanistic basis of human-specific DNA methylation patterns and the interpretation of inter-species non-coding variation.
BMC Genomics | 2013
Javier Prado-Martinez; Irene Hernando-Herraez; Belen Lorente-Galdos; Marc Dabad; Oscar Ramirez; Carlos Baeza-Delgado; Carlos Morcillo-Suarez; Can Alkan; Fereydoun Hormozdiari; Emanuele Raineri; Jordi Estellé; Marcos Fernandez-Callejo; Mònica Vallés; Lars Ritscher; Torsten Schöneberg; Elisa de la Calle-Mustienes; Sònia Casillas; Raquel Rubio-Acero; Marta Melé; Johannes Engelken; Mario Cáceres; José Luis Gómez-Skarmeta; Marta Gut; Jaume Bertranpetit; Ivo Gut; Teresa Abello; Evan E. Eichler; Ismael Mingarro; Carles Lalueza-Fox; Arcadi Navarro
BackgroundThe only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas.ResultsWe successfully identified the causal genetic variant for Snowflake’s albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake’s parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla.ConclusionsIn this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.
Scientific Reports | 2015
Iñigo Olalde; Federico Sánchez-Quinto; Debayan Datta; Urko M. Marigorta; Charleston W. K. Chiang; Juan Antonio Rodríguez; Marcos Fernandez-Callejo; Irene González; Magda Montfort; Laura Matas-Lalueza; Sergi Civit; Donata Luiselli; Philippe Charlier; Davide Pettener; Oscar Ramirez; Arcadi Navarro; Heinz Himmelbauer; Tomas Marques-Bonet; Carles Lalueza-Fox
A pyrographically decorated gourd, dated to the French Revolution period, has been alleged to contain a handkerchief dipped into the blood of the French king Louis XVI (1754–1793) after his beheading but recent analyses of living males from two Bourbon branches cast doubts on its authenticity. We sequenced the complete genome of the DNA contained in the gourd at low coverage (~2.5×) with coding sequences enriched at a higher ~7.3× coverage. We found that the ancestry of the gourds genome does not seem compatible with Louis XVIs known ancestry. From a functional perspective, we did not find an excess of alleles contributing to height despite being described as the tallest person in Court. In addition, the eye colour prediction supported brown eyes, while Louis XVI had blue eyes. This is the first draft genome generated from a person who lived in a recent historical period; however, our results suggest that this sample may not correspond to the alleged king.
Human Mutation | 2016
Steve Laurie; Marcos Fernandez-Callejo; Santiago Marco-Sola; Jean-Rémi Trotta; Jordi Camps; Alejandro Chacón; Antonio Espinosa; Marta Gut; Ivo Gut; Simon Heath; Sergi Beltran
As whole genome sequencing becomes cheaper and faster, it will progressively substitute targeted next‐generation sequencing as standard practice in research and diagnostics. However, computing cost–performance ratio is not advancing at an equivalent rate. Therefore, it is essential to evaluate the robustness of the variant detection process taking into account the computing resources required. We have benchmarked six combinations of state‐of‐the‐art read aligners (BWA‐MEM and GEM3) and variant callers (FreeBayes, GATK HaplotypeCaller, SAMtools) on whole genome and whole exome sequencing data from the NA12878 human sample. Results have been compared between them and against the NIST Genome in a Bottle (GIAB) variants reference dataset. We report differences in speed of up to 20 times in some steps of the process and have observed that SNV, and to a lesser extent InDel, detection is highly consistent in 70% of the genome. SNV, and especially InDel, detection is less reliable in 20% of the genome, and almost unfeasible in the remaining 10%. These findings will aid in choosing the appropriate tools bearing in mind objectives, workload, and computing infrastructure available.
BMC Genomics | 2017
Aitor Serres-Armero; Inna S. Povolotskaya; Javier Quilez; Oscar Ramirez; Gabriel Santpere; Lukas F. K. Kuderna; Jessica Hernandez-Rodriguez; Marcos Fernandez-Callejo; Daniel Gómez-Sánchez; Adam H. Freedman; Zhenxin Fan; John Novembre; Arcadi Navarro; Adam R. Boyko; Robert K. Wayne; Carles Vilà; Belen Lorente-Galdos; Tomas Marques-Bonet
BackgroundWhole genome re-sequencing data from dogs and wolves are now commonly used to study how natural and artificial selection have shaped the patterns of genetic diversity. Single nucleotide polymorphisms, microsatellites and variants in mitochondrial DNA have been interrogated for links to specific phenotypes or signals of domestication. However, copy number variation (CNV), despite its increasingly recognized importance as a contributor to phenotypic diversity, has not been extensively explored in canids.ResultsHere, we develop a new accurate probabilistic framework to create fine-scale genomic maps of segmental duplications (SDs), compare patterns of CNV across groups and investigate their role in the evolution of the domestic dog by using information from 34 canine genomes. Our analyses show that duplicated regions are enriched in genes and hence likely possess functional importance. We identify 86 loci with large CNV differences between dogs and wolves, enriched in genes responsible for sensory perception, immune response, metabolic processes, etc. In striking contrast to the observed loss of nucleotide diversity in domestic dogs following the population bottlenecks that occurred during domestication and breed creation, we find a similar proportion of CNV loci in dogs and wolves, suggesting that other dynamics are acting to particularly select for CNVs with potentially functional impacts.ConclusionsThis work is the first comparison of genome wide CNV patterns in domestic and wild canids using whole-genome sequencing data and our findings contribute to study the impact of novel kinds of genetic changes on the evolution of the domestic dog.
bioRxiv | 2017
Angelika Merkel; Marcos Fernandez-Callejo; Eloi Casals; Santiago Marco-Sola; Ronald Schuyler; Ivo Gut; Simon Heath
DNA methylation is essential for normal embryogenesis and development in mammals. Currently, whole genome sequencing of bisulfite converted DNA (WGBS) represents the gold standard for studying DNA methylation at genomic level. Contrary to other techniques, it provides an unbiased view of the entire genome at single base pair resolution. However, in practice, due to its (until recently) comparatively high cost, its application for the analysis of large data sets (i.e. > 50 samples) has been lagging behind other more cost-efficient platforms, such as for example the Illumina microarrays (Infinium 27K, 450k and EPIC). Subsequently, despite the variety of software tools that exist for the analysis of WGBS, processing of large datasets still remains cumbersome. We present GEMBS, a bioinformatics pipeline specifically designed for the analysis of large WGBS data sets. GEMBS is based on two core modules: GEM3, a high performance read aligner, and BScall, a variant caller specifically for bisulfite sequencing data. Both components are embedded in a highly parallel workflow enabling highly efficient and reliable execution in a HPC environment. In this study, we benchmark GEMBS performance against other common analysis tools and show how GEMBS can be used for accurate variant calling from WGBS data.