Marcos L. Aranda
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcos L. Aranda.
Experimental Neurology | 2013
Damián Dorfman; Diego C. Fernandez; Mónica S. Chianelli; Magdalena Miranda; Marcos L. Aranda; Ruth E. Rosenstein
The aim of this study was to elucidate whether post-ischemic enriched environment (EE) housing protects the retina from ischemic damage in adult rats, and the involvement of glutamate in retinal protection induced by EE housing. For this purpose, ischemia was induced by increasing intraocular pressure to 120 mm Hg for 40 min. After ischemia, animals were housed in a standard environment (SE) or EE and subjected to electroretinography and histological analysis. EE housing afforded significant functional protection in eyes exposed to ischemia/reperfusion injury. A marked reduction in retinal thickness and ganglion cell number, and an increase in Müller cell glial fibrillary acidic protein (GFAP) levels were observed in ischemic retinas from SE-housed animals, which were reversed by EE housing. A deficit in anterograde transport from the retina to the superior colliculus was observed in SE- but not in EE-housed animals. In SE-housed animals, ischemia induced a significant decrease in retinal glutamate uptake and glutamine synthetase activity, whereas EE housing reversed the effect of ischemia on these parameters. The intravitreal injection of supraphysiological levels of glutamate partially reproduced retinal alterations induced by ischemia/reperfusion, which were abrogated by EE housing. These results indicate that EE housing significantly protected retinal function and histology from ischemia/reperfusion injury in adult rats, likely through a glutamate-dependent mechanism.
Journal of Pineal Research | 2016
Marcos L. Aranda; María Florencia González Fleitas; Andrea De Laurentiis; María I. Keller Sarmiento; Mónica S. Chianelli; Pablo Sande; Damián Dorfman; Ruth E. Rosenstein
Optic neuritis (ON) is an inflammatory, demyelinating, and neurodegenerative condition of the optic nerve, which might induce permanent vision loss. Currently, there are no effective therapies for this disorder. We have developed an experimental model of primary ON in rats through a single microinjection of 4.5 μg of bacterial lipopolysaccharide (LPS) into the optic nerve. Since melatonin acts as a pleiotropic therapeutic agent in various neurodegenerative diseases, we analyzed the effect of melatonin on LPS‐induced ON. For this purpose, LPS or vehicle were injected into the optic nerve from adult male Wistar rats. One group of animals received a subcutaneous pellet of 20 mg melatonin at 24 hr before vehicle or LPS injection, and another group was submitted to a sham procedure. Melatonin completely prevented the decrease in visual evoked potentials (VEPs), and pupil light reflex (PLR), and preserved anterograde transport of cholera toxin β‐subunit from the retina to the superior colliculus. Moreover, melatonin prevented microglial reactivity (ED1‐immunoreactivity, P < 0.01), astrocytosis (glial fibrillary acid protein‐immunostaining, P < 0.05), demyelination (luxol fast blue staining, P < 0.01), and axon (toluidine blue staining, P < 0.01) and retinal ganglion cell (Brn3a‐immunoreactivity, P < 0.01) loss, induced by LPS. Melatonin completely prevented the increase in nitric oxide synthase 2, cyclooxygenase‐2 levels (Western blot) and TNFα levels, and partly prevented lipid peroxidation induced by experimental ON. When the pellet of melatonin was implanted at 4 days postinjection of LPS, it completely reversed the decrease in VEPs and PLR. These data suggest that melatonin could be a promising candidate for ON treatment.
PLOS ONE | 2015
Damián Dorfman; Marcos L. Aranda; Ruth E. Rosenstein
Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm) optic nerve (ON) could be the first structural change of the visual pathway in streptozotocin (STZ)-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE) or remained in a standard environment (SE) for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity), microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1) immunoreactivity), astrocyte reactivity (glial fibrillary acid protein-immunostaining), myelin (myelin basic protein immunoreactivity), ultrastructure, and brain derived neurotrophic factor (BDNF) levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway.
Experimental Neurology | 2015
Marcos L. Aranda; Damián Dorfman; Pablo Sande; Ruth E. Rosenstein
Optic neuritis (ON) is a condition involving primary inflammation, demyelination, and axonal injury in the optic nerve which leads to retinal ganglion cell (RGC) loss, and visual dysfunction. We investigated the ability of a single microinjection of bacterial lipopolysaccharide (LPS) directly into the optic nerve to induce functional and structural alterations compatible with ON. For this purpose, optic nerves from male Wistar rats remained intact or were injected with vehicle or LPS. The effect of LPS was evaluated at several time points post-injection in terms of: i) visual pathway and retinal function (visual evoked potentials (VEPs) and electroretinograms, (ERGs), respectively), ii) anterograde transport from the retina to its projection areas, iii) consensual pupil light reflex (PLR), iv) optic nerve histology, v) microglia/macrophage reactivity (by Iba-1- and ED1-immunostaining), vi) astrocyte reactivity (by glial fibrillary acid protein-immunostaining), vii) axon number (by toluidine blue staining), vii) demyelination (by myelin basic protein immunoreactivity and luxol fast blue staining), viii) optic nerve ultrastructure, and ix) RGC number (by Brn3a immunoreactivity). LPS induced a significant and persistent decrease in VEP amplitude and PLR, without changes in the ERG. In addition, LPS induced a deficit in anterograde transport, and an early inflammatory response consisting in an increased cellularity, and Iba-1 and ED1-immunoreactivity in the optic nerve, which were followed by changes in axonal density, astrocytosis, demyelination, and axon and RGC loss. These results suggest that the microinjection of LPS into the optic nerve may serve as a new experimental model of primary ON.
PLOS ONE | 2014
Damián Dorfman; Marcos L. Aranda; María Florencia González Fleitas; Mónica S. Chianelli; Diego C. Fernandez; Pablo Sande; Ruth E. Rosenstein
Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Available treatments are not completely effective. We analyzed the effect of environmental enrichment on retinal damage induced by experimental diabetes in adult Wistar rats. Diabetes was induced by an intraperitoneal injection of streptozotocin. Three days after vehicle or streptozotocin injection, animals were housed in enriched environment or remained in a standard environment. Retinal function (electroretinogram, and oscillatory potentials), retinal morphology, blood-retinal barrier integrity, synaptophysin, astrocyte and Müller cell glial fibrillary acidic protein, vascular endothelial growth factor, tumor necrosis factor-α, and brain-derived neurotrophic factor levels, as well as lipid peroxidation were assessed in retina from diabetic animals housed in standard or enriched environment. Environmental enrichment preserved scotopic electroretinogram a-wave, b-wave and oscillatory potential amplitude, avoided albumin-Evans blue leakage, prevented the decrease in retinal synaptophysin and astrocyte glial fibrillary acidic protein levels, the increase in Müller cell glial fibrillary acidic protein, vascular endothelial growth factor and tumor necrosis factor-α levels, as well as oxidative stress induced by diabetes. In addition, enriched environment prevented the decrease in retinal brain-derived neurotrophic factor levels induced by experimental diabetes. When environmental enrichment started 7 weeks after diabetes onset, retinal function was significantly preserved. These results indicate that enriched environment could attenuate the early diabetic damage in the retina from adult rats.
Experimental Neurology | 2013
Ezequiel Salido; Damián Dorfman; Melina P. Bordone; Mónica S. Chianelli; María I. Keller Sarmiento; Marcos L. Aranda; Ruth E. Rosenstein
Diabetic retinopathy is a leading cause of acquired blindness in adults, mostly affected by type 2 diabetes mellitus (T2DM). We have developed an experimental model of early T2DM in adult rats which mimics some features of human T2DM at its initial stages, and provokes significant retinal alterations. We investigated the effect of ischemic conditioning on retinal changes induced by the moderate metabolic derangement. For this purpose, adult male Wistar rats received a control diet or 30% sucrose in the drinking water, and 3 weeks after this treatment, animals were injected with vehicle or streptozotocin (STZ, 25mg/kg). Retinal ischemia was induced by increasing intraocular pressure to 120 mm Hg for 5 min; this maneuver started 3 weeks after vehicle or STZ injection and was weekly repeated in one eye, while control eyes were submitted to a sham procedure. Fasting and postprandial glycemia, and glucose, and insulin tolerance tests were analyzed. At 12 weeks of treatment, animals which received a sucrose-enriched diet and STZ showed significant differences in metabolic tests, as compared with control groups. Brief ischemia pulses in one eye and a sham procedure in the contralateral eye did not affect glucose metabolism in control or diabetic rats. Ischemic pulses reduced the decrease in the electroretinogram a-wave, b-wave, and oscillatory potential amplitude, and the increase in retinal lipid peroxidation, NOS activity, TNFα, Müller cells glial fibrillary acidic protein, and vascular endothelial growth factor levels observed in diabetic animals. In addition, ischemic conditioning prevented the decrease in retinal catalase activity induced by T2DM. These results indicate that induction of ischemic tolerance could constitute a fertile avenue for the development of new therapeutic strategies to treat diabetic retinopathy associated with T2DM.
Disease Models & Mechanisms | 2018
Hernán Dieguez; H.E. Romeo; María Florencia González Fleitas; Marcos L. Aranda; Georgia A. Milne; Ruth E. Rosenstein; Damián Dorfman
ABSTRACT Non-exudative age-related macular degeneration, a prevalent cause of blindness, is a progressive and degenerative disease characterized by alterations in Bruchs membrane, retinal pigment epithelium, and photoreceptors exclusively localized in the macula. Although experimental murine models exist, the vast majority take a long time to develop retinal alterations and, in general, these alterations are ubiquitous, with many resulting from non-eye-specific genetic manipulations; additionally, most do not always reproduce the hallmarks of human age-related macular degeneration. Choroid vessels receive sympathetic innervation from the superior cervical ganglion, which, together with the parasympathetic system, regulates blood flow into the choroid. Choroid blood flow changes have been involved in age-related macular degeneration development and progression. At present, no experimental models take this factor into account. The aim of this work was to analyze the effect of superior cervical gangliectomy (also known as ganglionectomy) on the choroid, Bruchs membrane, retinal pigment epithelium and retina. Adult male C57BL/6J mice underwent unilateral superior cervical gangliectomy and a contralateral sham procedure. Although superior cervical gangliectomy induced ubiquitous choroid and choriocapillaris changes, it induced Bruchs membrane thickening, loss of retinal pigment epithelium melanin content and retinoid isomerohydrolase, the appearance of drusen-like deposits, and retinal pigment epithelium and photoreceptor atrophy, exclusively localized in the temporal side. Moreover, superior cervical gangliectomy provoked a localized increase in retinal pigment epithelium and photoreceptor apoptosis, and a decline in photoreceptor electroretinographic function. Therefore, superior cervical gangliectomy recapitulated the main features of human non-exudative age-related macular degeneration, and could become a new experimental model of dry age-related macular degeneration, and a useful platform for developing new therapies. Summary: Ubiquitous alteration of choroid circulation causes localized retinal alterations in mice that are similar to human non-exudative age-related macular degeneration, thus providing a new potential experimental model of the disease.
Experimental Eye Research | 2019
María Florencia González Fleitas; Marcos L. Aranda; Hernán Dieguez; Julian D. Devouassoux; Mónica S. Chianelli; Damián Dorfman; Ruth E. Rosenstein
ABSTRACT Retinal ischemia is a condition associated with several degenerative diseases leading to visual impairment and blindness worldwide. Currently, there is no highly effective therapy for ischemic retinopathies. This study was designed to determine possible benefits of pre‐exposure to enriched environment against retinal damage induced by acute ischemia. For this purpose, adult male Wistar rats were randomly assigned to a pre‐ischemic standard environment or a pre‐ischemic enriched environment for 3 weeks, followed by unilateral ischemia induced by increasing intraocular pressure above 120 mm Hg for 40 min and reperfusion for 1 or 2 weeks in standard environment. Animals were subjected to electroretinography and histological analysis. Pre‐ischemic enriched environment afforded significant functional protection in eyes exposed to ischemia/reperfusion injury. A marked reduction in retinal layer thickness, reduced synaptophysin‐immunoreactivity and retinal ganglion cell (RGC) number, and increased microglia/macrophage reactivity were observed in ischemic retinas from animals submitted to pre‐ischemic standard environment, which were prevented by pre‐ischemic enriched environment. A deficit in anterograde transport from the retina to the superior colliculus and the lateral geniculate nucleus was observed in animals exposed to pre‐ischemic standard environment, which was lower in animals previously exposed to enriched environment. The exposure to enriched environment before ischemia increased retinal brain derived neurotrophic factor (BDNF) protein levels in ischemic retinas and the administration of ANA‐12 (a TrkB antagonist) abolished the protective effect of enriched environment on retinal function and retinal ganglion cell number. These results indicate that pre‐ischemic enriched environment increases retinal resilience to acute ischemic damage, possibly through a BDNF/TrkB mediated pathway. HighlightsEnriched environment prior to ischemia protects retinal function against ischemia.Enriched environment (EE) prevents structural alterations induced by ischemia.EE prior to ischemia increases retinal BDNF levels.A TrkB antagonist abolishes the protective effect of EE.EE prior to ischemia increases retinal resilience to acute ischemic damage.
Neuropharmacology | 2017
Marcos L. Aranda; María Florencia González Fleitas; Hernán Dieguez; Georgia A. Milne; Julian D. Devouassoux; María I. Keller Sarmiento; Mónica S. Chianelli; Pablo Sande; Damián Dorfman; Ruth E. Rosenstein
ABSTRACT Optic neuritis (ON) is an inflammatory, demyelinating, neurodegenerative, and presently untreatable condition of the optic nerve which might induce blindness. We analyzed the effect of environmental enrichment (EE) on visual pathway damage provoked by experimental ON induced by a microinjection of bacterial lipopolysaccharide (LPS) into the optic nerve. For this purpose, LPS was microinjected into the optic nerve from male Wistar rats. After injection, one group of animals was submitted to EE, and another group remained in standard environment (SE) for 21 days. EE prevented the decrease in pupil light reflex (PLR), visual evoked potentials, retinal anterograde transport, phosphorylated neurofilament immunoreactivity, myelination (luxol fast blue staining), and axon (toluidine blue staining) and retinal ganglion cell (Brn3a‐immunoreactivity) number. EE also prevented microglial/macrophage reactivity (Iba‐1‐ and ED1‐immunoreactivity), and astrocytosis (glial fibrillary acidic protein‐immunostaining) induced by experimental ON. LPS‐injected optic nerves displayed oxidative damage and increased inducible nitric oxide synthase, cyclooxygenase‐2, and interleukin‐1&bgr; and TNF&agr; mRNA levels which were prevented by EE. EE increased optic nerve brain‐derived neurotrophic factor levels. When EE started at 4 (but not 7) days post‐injection of LPS, a preservation of the PLR was observed at 21 days post‐LPS, which was blocked by the daily administration of ANA‐12 from day 4 to day 7 post‐LPS. Moreover, EE from day 4 to day 7 post‐LPS significantly preserved the PLR at 21 days post‐injection. Taken together, our data suggest that EE preserved visual functions and reduced neuroinflammation of the optic nerve. This article is part of the Special Issue entitled “Neurobiology of Environmental Enrichment”. HighlightsEnvironmental enrichment (EE) protects visual functions against optic neuritis.EE protects retinal anterograde transport and prevents microglial reactivity.EE prevents astrocytosis, demyelination, and axon and retinal ganglion cell loss.EE housing behaves as an anti‐inflammatory, anti‐oxidative, and pro‐BDNF therapy.A TrkB receptor antagonist blocks the protective effect of EE on visual function.
Current Neuropharmacology | 2017
Marcos L. Aranda; María Florencia González Fleitas; Hernán Dieguez; Agustina Iaquinandi; Pablo Sande; Damián Dorfman; Ruth E. Rosenstein
Background: Uveitis and optic neuritis are prevalent ocular inflammatory diseases, and highly damaging ocular conditions. Both diseases are currently treated with corticosteroids, but they do not have adequate efficacy and are often associated with severe side effects. Thus, uveitis and optic neuritis remain a challenging field to ophthalmologists and a significant public health concern. Objective: This review summarizes findings showing the benefits of a treatment with melatonin in experimental models of these inflammatory ocular diseases. Results: Oxidative and nitrosative damage, tumor necrosis factor, and prostaglandin production have been involved in the pathogeny of uveitis and optic neuritis. Melatonin is an efficient antioxidant and antinitridergic, and has the ability to reduce prostaglandin and tumor necrosis factor levels both in the retina and optic nerve. Moreover, melatonin not only prevents functional and structural consequences of experimental uveitis and optic neuritis, but it is also capable of suppressing the actively ongoing ocular inflammatory response. Conclusions: Since melatonin protects ocular tissues against inflammation, it could be a potentially useful anti-inflammatory therapy in ophthalmology.