Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcos L. Gazarini is active.

Publication


Featured researches published by Marcos L. Gazarini.


Journal of Biological Chemistry | 2009

Carotenoid Biosynthesis in Intraerythrocytic Stages of Plasmodium falciparum

Renata Tonhosolo; Fabio L. D'Alexandri; Veridiana Vera de Rosso; Marcos L. Gazarini; Miriam Y. Matsumura; Valnice J. Peres; Emilio F. Merino; Jane M. Carlton; Gerhard Wunderlich; Adriana Zerlotti Mercadante; Emilia A. Kimura; Alejandro M. Katzin

Carotenoids are widespread lipophilic pigments synthesized by all photosynthetic organisms and some nonphotosynthetic fungi and bacteria. All carotenoids are derived from the C40 isoprenoid precursor geranylgeranyl pyrophosphate, and their chemical and physical properties are associated with light absorption, free radical scavenging, and antioxidant activity. Carotenoids are generally synthesized in well defined subcellular organelles, the plastids, which are also present in the phylum Apicomplexa, which comprises a number of important human parasites, such as Plasmodium and Toxoplasma. Recently, it was demonstrated that Toxoplasma gondii synthesizes abscisic acid. We therefore asked if Plasmodium falciparum is also capable of synthesizing carotenoids. Herein, biochemical findings demonstrated the presence of carotenoid biosynthesis in the intraerythrocytic stages of the apicomplexan parasite P. falciparum. Using metabolic labeling with radioisotopes, in vitro inhibition tests with norflurazon, a specific inhibitor of plant carotenoid biosynthesis, the results showed that intraerythrocytic stages of P. falciparum synthesize carotenoid compounds. A plasmodial enzyme that presented phytoene synthase activity was also identified and characterized. These findings not only contribute to the current understanding of P. falciparum evolution but shed light on a pathway that could serve as a chemotherapeutic target.


Journal of Cellular Physiology | 2010

Evidence of lysosomal membrane permeabilization in mucopolysaccharidosis type I: Rupture of calcium and proton homeostasis

Vanessa Gonçalves Pereira; Marcos L. Gazarini; Lara Cheliz Rodrigues; Flavia Helena da Silva; Sang Won Han; Ana Maria Martins; Ivarne L.S. Tersariol; Vânia D'Almeida

Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of α‐iduronidase (IDUA), which leads to intralysosomal accumulation of glysosaminoglycans. Patients with MPS I present a wide range of clinical manifestations, but the mechanisms by which these alterations occur are still not fully understood. Genotype–phenotype correlations have not been well established for MPS I; hence, it is likely that secondary and tertiary alterations in cellular metabolism and signaling may contribute to the physiopathology of the disease. The aim of this study was to analyze Ca2+ and H+ homeostasis, lysosomal leakage of cysteine proteases, and apoptosis in a murine model of MPS I. After exposition to specific drugs, cells from Idua−/− mice were shown to release more Ca2+ from the lysosomes and endoplasmic reticulum than Idua+/+ control mice, suggesting a higher intraorganelle store of this ion. A lower content of H+ in the lysosomes and in the cytosol was found in cells from Idua−/− mice, suggesting an alteration of pH homeostasis. In addition, Idua−/− cells presented a higher activity of cysteine proteases in the cytosol and an increased rate of apoptotic cells when compared to the control group, indicating that lysosomal membrane permeabilization might occur in this model. Altogether, our results suggest that secondary alterations—as changes in Ca2+ and H+ homeostasis and lysosomal membrane permeabilization—may contribute for cellular damage and death in the physiopathology of MPS I. J. Cell. Physiol. 223: 335–342, 2010.


Journal of Pineal Research | 2011

Melatonin triggers PKA activation in the rodent malaria parasite Plasmodium chabaudi

Marcos L. Gazarini; Flávio H. Beraldo; Fabiana M. Almeida; Martin D. Bootman; Aline M. da Silva; Célia R.S. Garcia

Abstract:  Calcium (Ca2+) is a critical regulator of many aspects of the Plasmodium reproductive cycle. In particular, intra‐erythrocyte Plasmodium parasites respond to circulating levels of the melatonin in a process mediated partly by intracellular Ca2+. Melatonin promotes the development and synchronicity of parasites, thereby enhancing their spread and worsening the clinical implications. The signalling mechanisms underlying the effects of melatonin are not fully established, although both Ca2+ and cyclic AMP (cAMP) have been implicated. Furthermore, it is not clear whether different strains of Plasmodium use the same, or divergent, signals to control their development. The aim of this study was to explore the signalling mechanisms engaged by melatonin in P. chabaudi, a virulent rodent parasite. Using parasites at the throphozoite stage acutely isolated from mice erythrocytes, we demonstrate that melatonin triggers cAMP production and protein kinase A (PKA) activation. Interestingly, the stimulation of cAMP/PKA signalling by melatonin was dependent on elevation of Ca2+ within the parasite, because buffering Ca2+ changes using the chelator BAPTA prevented cAMP production in response to melatonin. Incubation with melatonin evoked robust Ca2+ signals within the parasite, as did the application of a membrane‐permeant analogue of cAMP. Our data suggest that P. chabaudi engages both Ca2+ and cAMP signalling systems when stimulated by melatonin. Furthermore, there is positive feedback between these messengers, because Ca2+ evokes cAMP elevation and vice versa. Melatonin more than doubled the observed extent of parasitemia, and the increase in cAMP concentration and PKA activation was essential for this effect. These data support the possibility to use melatonin antagonists or derivates in therapeutic approach.


Scandinavian Journal of Immunology | 2013

Sleep Deprivation Alters Gene Expression and Antioxidant Enzyme Activity in Mice Splenocytes

Lisandro Lungato; M. S. Marques; V. G. Pereira; S. Hix; Marcos L. Gazarini; Sergio Tufik; Vânia D'Almeida

Cellular defence against the formation of reactive oxygen species (ROS) involves a number of mechanisms in which antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) play an important role. The relation between sleep deprivation and oxidative stress has not yet been completely elucidated. Although some authors did not find evidence of this relationship, others found alterations in some oxidative stress markers in response to sleep deprivation. Thus, the objective of this study was to identify changes induced by sleep deprivation in the activity and gene expression of antioxidant enzymes in mice splenocytes, ideally corroborating a better understanding of the observed effects related to sleep deprivation, which could be triggered by oxidative imbalance. Splenocytes from mice sleep deprived for 72 h showed no significant difference in CAT and CuZnSOD gene expression compared with normal sleep mice. However, sleep‐deprived mice did show higher MnSOD gene expression than the control group. Concerning enzymatic activity, CuZnSOD and MnSOD significantly increased after sleep deprivation, despite the expression in CuZnSOD remained unchanged. Moreover, CAT activity was significantly lower after sleep deprivation. The data suggest that the antioxidant system is triggered by sleep deprivation, which in turn could influence the splenocytes homoeostasis, thus interfering in physiological responses.


Malaria Journal | 2012

Intracellular proteolysis of kininogen by malaria parasites promotes release of active kinins

Piero Bagnaresi; Nilana Mt de Barros; Diego M. Assis; Pollyana M.S. Melo; Raphael Gomes Fonseca; Maria A. Juliano; João Bosco Pesquero; Luiz Juliano; Philip J. Rosenthal; Adriana K. Carmona; Marcos L. Gazarini

BackgroundThe malaria burden remains a major public health concern, especially in sub-Saharan Africa. The complex biology of Plasmodium, the apicomplexan parasite responsible for this disease, challenges efforts to develop new strategies to control the disease. Proteolysis is a fundamental process in the metabolism of malaria parasites, but roles for proteases in generating vasoactive peptides have not previously been explored.ResultsIn the present work, it was demonstrated by mass spectrometry analysis that Plasmodium parasites (Plasmodium chabaudi and Plasmodium falciparum) internalize and process plasma kininogen, thereby releasing vasoactive kinins (Lys-BK, BK and des-Arg9-BK) that may mediate haemodynamic alterations during acute malaria. In addition, it was demonstrated that the P. falciparum cysteine proteases falcipain-2 and falcipain-3 generated kinins after incubation with human kininogen, suggesting that these enzymes have an important role in this process. The biologic activity of peptides released by Plasmodium parasites was observed by measuring ileum contraction and activation of kinin receptors (B1 and B2) in HUVEC cells; the peptides elicited an increase in intracellular calcium, measured by Fluo-3 AM fluorescence. This effect was suppressed by the specific receptor antagonists Des-Arg9[Leu8]-BK and HOE-140.ConclusionsIn previously undescribed means of modulating host physiology, it was demonstrated that malaria parasites can generate active kinins by proteolysis of plasma kininogen.


Peptides | 2016

Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom.

S. El Chamy Maluf; C. Dal Mas; Eduardo B. Oliveira; Pollyana M.S. Melo; Adriana K. Carmona; Marcos L. Gazarini; Mirian A.F. Hayashi

We show here that crotamine, a polypeptide from the South American rattlesnake venom with cell penetrating and selective anti-fungal and anti-tumoral properties, presents a potent anti-plasmodial activity in culture. Crotamine inhibits the development of the Plasmodium falciparum parasites in a dose-dependent manner [IC50 value of 1.87 μM], and confocal microscopy analysis showed a selective internalization of fluorescent-labeled crotamine into P. falciparum infected erythrocytes, with no detectable fluorescence in uninfected healthy erythrocytes. In addition, similarly to the crotamine cytotoxic effects, the mechanism underlying the anti-plasmodial activity may involve the disruption of parasite acidic compartments H(+) homeostasis. In fact, crotamine promoted a reduction of parasites organelle fluorescence loaded with the lysosomotropic fluorochrome acridine orange, in the same way as previously observed mammalian tumoral cells. Taken together, we show for the first time crotamine not only compromised the metabolism of the P. falciparum, but this toxin also inhibited the parasite growth. Therefore, we suggest this snake polypeptide as a promising lead molecule for the development of potential new molecules, namely peptidomimetics, with selectivity for infected erythrocytes and ability to inhibit the malaria infection by its natural affinity for acid vesicles.


Biochimica et Biophysica Acta | 2012

Sleep deprivation impairs calcium signaling in mouse splenocytes and leads to a decreased immune response

Lisandro Lungato; Marcos L. Gazarini; Edgar J. Paredes-Gamero; Ivarne L.S. Tersariol; Sergio Tufik; Vânia D'Almeida

BACKGROUND Sleep is a physiological event that directly influences health by affecting the immune system, in which calcium (Ca(2+)) plays a critical signaling role. We performed live cell measurements of cytosolic Ca(2+) mobilization to understand the changes in Ca(2+) signaling that occur in splenic immune cells after various periods of sleep deprivation (SD). METHODS Adult male mice were subjected to sleep deprivation by platform technique for different periods (from 12 to 72h) and Ca(2+) intracellular fluctuations were evaluated in splenocytes by confocal microscopy. We also performed spleen cell evaluation by flow cytometry and analyzed intracellular Ca(2+) mobilization in endoplasmic reticulum and mitochondria. Additionally, Ca(2+) channel gene expression was evaluated RESULTS Splenocytes showed a progressive loss of intracellular Ca(2+) maintenance from endoplasmic reticulum (ER) stores. Transient Ca(2+) buffering by the mitochondria was further compromised. These findings were confirmed by changes in mitochondrial integrity and in the performance of the store operated calcium entry (SOCE) and stromal interaction molecule 1 (STIM1) Ca(2+) channels. CONCLUSIONS AND GENERAL SIGNIFICANCE These novel data suggest that SD impairs Ca(2+) signaling, most likely as a result of ER stress, leading to an insufficient Ca(2+) supply for signaling events. Our results support the previously described immunosuppressive effects of sleep loss and provide additional information on the cellular and molecular mechanisms involved in sleep function.


Parasitology International | 2016

Hypervalent organotellurium compounds as inhibitors of P. falciparum calcium-dependent cysteine proteases.

Sarah El Chamy Maluf; Pollyana M.S. Melo; Fernando de Pilla Varotti; Marcos L. Gazarini; Rodrigo L.O.R. Cunha; Adriana K. Carmona

Hypervalent organotellurium compounds (organotelluranes) have shown several promising applications, including their use as potent and selective cysteine protease inhibitors and antiprotozoal agents. Here, we report the antimalarial activities of three organotellurane derivatives (RF05, RF07 and RF19) in two Plasmodium falciparum strains (CQS 3D7 and CQR W2), which demonstrated significant decreases in parasitemia in vitro. The inhibition of intracellular P. falciparum proteases by RF05, RF07 and RF19 was determined and the IC50 values were 3.7±1.0μM, 1.1±0.2μM and 0.2±0.01μM, respectively. Using an assay performed in the presence of the ER Ca(2+)-ATPase inhibitor we showed that the main enzymatic targets were cysteine proteases stimulated by calcium (calpains). None of the compounds tested caused haemolysis or a significant decrease in endothelial cell viability in the concentration range used for the inhibition assay. Taken together, the results suggest promising compounds for the development of antimalarial drugs.


Analytical Biochemistry | 2015

Specific calpain activity evaluation in Plasmodium parasites

Mayrim M. Gomes; Alexandre Budu; Priscilla D.S. Ventura; Piero Bagnaresi; Simone S. Cotrin; Rodrigo L.O.R. Cunha; Adriana K. Carmona; Luiz Juliano; Marcos L. Gazarini

In the intraerythrocytic trophozoite stages of Plasmodium falciparum, the calcium-dependent cysteine protease calpain (Pf-calpain) has an important role in the parasite calcium modulation and cell development. We established specific conditions to follow by confocal microscopy and spectrofluorimetry measurements the intracellular activity of Pf-calpain in live cells. The catalytic activity was measured using the fluorogenic Z-Phe-Arg-MCA (where Z is carbobenzoxy and MCA is 4-methylcoumaryl-7-amide). The calmodulin inhibitor calmidazolium and the sarcoplasmic reticulum calcium ATPase inhibitor thapsigargin were used for modifications in the cytosolic calcium concentrations that persisted in the absence of extracellular calcium. The observed calcium-dependent peptidase activity was greatly inhibited by specific cysteine protease inhibitor E-64 and by the selective calpain inhibitor ALLN (N-acetyl-l-leucyl-l-leucyl-l-norleucinal). Taken together, we observed that intracellular Pf-calpain can be selectively detected and is the main calcium-dependent protease in the intraerythrocytic stages of the parasite. The method described here can be helpful in cell metabolism studies and antimalarial drug screening.


Malaria Journal | 2015

Paradoxical sleep deprivation impairs mouse survival after infection with malaria parasites

Lisandro Lungato; Marcos L. Gazarini; Edgar J. Paredes-Gamero; Sergio Tufik; Vânia D’Almeida

BackgroundParasitic diseases like malaria are a major public health problem in many countries and disrupted sleep patterns are an increasingly common part of modern life. The aim of this study was to assess the effects of paradoxical sleep deprivation (PSD) and sleep rebound (RB) on malarial parasite infection in mice.MethodsAfter PSD, one group was immediately infected with parasites (PSD). The two other PSD rebound groups were allowed to sleep normally for either 24 h (24 h RB) or 48 h (48 h RB). After the recovery periods, mice were inoculated with parasites.ResultsThe PSD group was the most affected by parasites presenting the higher death rate (0.02), higher number of infected cells (p < 0.01), and decrease in body weight (p < 0.04) compared to control and 48 h RB groups. The 24 h RB group was also different from control group in survival (p < 0.03), number of infected cells (p < 0.05) and body weight (p < 0.04). After 48 hours of sleep rebound animals were allowed to restore their response to parasitic infection similar to normal sleep animals.ConclusionsThese results suggest that PSD is damaging to the immune system and leads to an increased infection severity of malaria parasites; only 48 hours of recovery sleep was sufficient to return the mice infection response to baseline values.

Collaboration


Dive into the Marcos L. Gazarini's collaboration.

Top Co-Authors

Avatar

Adriana K. Carmona

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Pollyana M.S. Melo

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Piero Bagnaresi

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Alexandre Budu

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Luiz Juliano

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Sarah El Chamy Maluf

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Diego M. Assis

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Lisandro Lungato

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Maria A. Juliano

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Sergio Tufik

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge