Marcos Matamoros
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcos Matamoros.
Circulation-arrhythmia and Electrophysiology | 2014
Adriana Barana; Marcos Matamoros; Pablo Dolz-Gaitón; Marta Pérez-Hernández; Irene Amorós; Mercedes Núñez; Sandra Sacristán; Álvaro Pedraz; Ángel González Pinto; Francisco Fernández-Avilés; Juan Tamargo; Eva Delpón; Ricardo Caballero
Background—Atrial fibrillation is characterized by progressive atrial structural and electrical changes (atrial remodeling) that favor arrhythmia recurrence and maintenance. Reduction of L-type Ca2+ current (ICa,L) density is a hallmark of the electrical remodeling. Alterations in atrial microRNAs could contribute to the protein changes underlying atrial fibrillation–induced atrial electrical remodeling. This study was undertaken to compare miR-21 levels in isolated myocytes from atrial appendages obtained from patients in sinus rhythm and with chronic atrial fibrillation (CAF) and to determine whether L-type Ca2+ channel subunits are targets for miR-21. Methods and Results—Quantitative polymerase chain reaction analysis showed that miR-21 was expressed in human atrial myocytes from patients in sinus rhythm and that its expression was significantly greater in CAF myocytes. There was an inverse correlation between miR-21 and the mRNA of the &agr;1c subunit of the calcium channel (CACNA1C) expression and ICa,L density. Computational analyses predicted that CACNA1C and the mRNA of the &bgr;2 subunit of the calcium channel (CACNB2) could be potential targets for miR-21. Luciferase reporter assays demonstrated that miR-21 produced a concentration-dependent decrease in the luciferase activity in Chinese Hamster Ovary cells transfected with CACNA1C and CACNB2 3′ untranslated region regions. miR-21 transfection in HL-1 cells produced changes in ICa,L properties qualitatively similar to those produced by CAF (ie, a marked reduction of ICa,L density and shift of the inactivation curves to more depolarized potentials). Conclusions—Our results demonstrated that CAF increases miR-21 expression in enzymatically isolated human atrial myocytes. Moreover, it decreases ICa,L density by downregulating Ca2+ channel subunits expression. These results suggested that this microRNA could participate in the CAF-induced ICa,L downregulation and in the action potential duration shortening that maintains the arrhythmia.
Cardiovascular Research | 2016
Marta Pérez-Hernández; Marcos Matamoros; Adriana Barana; Irene Amorós; Ricardo Gómez; Mercedes Núñez; Sandra Sacristán; Ángel González Pinto; Francisco Fernández-Avilés; Juan Tamargo; Eva Delpón; Ricardo Caballero
AIMS Atrial fibrillation (AF) produces rapid changes in the electrical properties of the atria (electrical remodelling) that promote its own recurrence. In chronic AF (CAF) patients, up-regulation of the slow delayed rectifier K(+) current (IKs) and down-regulation of the voltage-gated Ca(2+) current (ICa,L) are hallmarks of electrical remodelling and critically contribute to the abbreviation of action potential duration and atrial refractory period. Recent evidences suggested that Pitx2c, a bicoid-related homeodomain transcription factor involved in directing cardiac asymmetric morphogenesis, could play a role in atrial remodelling. However, its effects on IKs and ICa,L are unknown. METHODS AND RESULTS Real-time quantitative polymerase chain reaction analysis showed that Pitx2c mRNA expression was significantly higher in human atrial myocytes from CAF patients than those from sinus rhythm patients. The expression of Pitx2c was positively and negatively correlated with IKs and ICa,L densities, respectively. Expression of Pitx2c in HL-1 cells increased IKs density and reduced ICa,L density. Luciferase assays demonstrated that Pitx2c increased transcriptional activity of KCNQ1 and KCNE1 genes. Conversely, its effects on ICa,L could be mediated by the atrial natriuretic peptide. CONCLUSION Our results demonstrated for the first time that CAF increases Pitx2c expression in isolated human atrial myocytes and suggested that this transcription factor could contribute to the CAF-induced IKs increase and ICa,L reduction observed in humans.
PLOS ONE | 2013
Pablo Dolz-Gaitón; Mercedes Núñez; Lucía Núñez; Adriana Barana; Irene Amorós; Marcos Matamoros; Marta Pérez-Hernández; Marta González de la Fuente; Miguel Álvarez-López; Rosa Macías-Ruiz; Luis Tercedor-Sánchez; Juan Jiménez-Jáimez; Eva Delpón; Ricardo Caballero; Juan Tamargo
Introduction We functionally analyzed a frameshift mutation in the SCN5A gene encoding cardiac Na+ channels (Nav1.5) found in a proband with repeated episodes of ventricular fibrillation who presented bradycardia and paroxysmal atrial fibrillation. Seven relatives also carry the mutation and showed a Brugada syndrome with an incomplete and variable expression. The mutation (p.D1816VfsX7) resulted in a severe truncation (201 residues) of the Nav1.5 C-terminus. Methods and Results Wild-type (WT) and mutated Nav1.5 channels together with hNavβ1 were expressed in CHO cells and currents were recorded at room temperature using the whole-cell patch-clamp. Expression of p.D1816VfsX7 alone resulted in a marked reduction (≈90%) in peak Na+ current density compared with WT channels. Peak current density generated by p.D1816VfsX7+WT was ≈50% of that generated by WT channels. p.D1816VfsX7 positively shifted activation and inactivation curves, leading to a significant reduction of the window current. The mutation accelerated current activation and reactivation kinetics and increased the fraction of channels developing slow inactivation with prolonged depolarizations. However, late INa was not modified by the mutation. p.D1816VfsX7 produced a marked reduction of channel trafficking toward the membrane that was not restored by decreasing incubation temperature during cell culture or by incubation with 300 μM mexiletine and 5 mM 4-phenylbutirate. Conclusion Despite a severe truncation of the C-terminus, the resulting mutated channels generate currents, albeit with reduced amplitude and altered biophysical properties, confirming the key role of the C-terminal domain in the expression and function of the cardiac Na+ channel.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Caballero R; Raquel G. Utrilla; Irene Amorós; Marcos Matamoros; Marta Pérez-Hernández; David Tinaquero; Silvia Alfayate; Paloma Nieto-Marín; Guadalupe Guerrero-Serna; Qinghua Liu; Roberto Ramos-Mondragón; Daniela Ponce-Balbuena; Todd J. Herron; Katherine Campbell; David Filgueiras-Rama; Rafael Peinado; Jose Lopez-Sendon; José Jalife; Eva Delpón; Juan Tamargo
Significance Tbx20 is a transcription factor whose critical role in cardiogenesis is well-established. Here we functionally analyzed the electrophysiological effects produced by a mutation (p.R311C) in Tbx20 found in some affected individuals belonging to a family with long QT syndrome (an inherited cardiac arrhythmia due to delayed ventricular repolarization). We demonstrated that Tbx20 selectively increases the expression of KCNH2, which encodes for the channel Kv11.1 (hERG) that generates the main ventricular repolarizing current. Conversely, the p.R311C mutation disables the Tbx20 protranscriptional activity over KCNH2, leading to a decrease in the hERG current and a prolongation of the action potentials recorded in human induced pluripotent stem cell-derived cardiomyocytes. Therefore, we propose that Tbx20, besides its described role, regulates KCNH2 expression. Long QT syndrome (LQTS) exhibits great phenotype variability among family members carrying the same mutation, which can be partially attributed to genetic factors. We functionally analyzed the KCNH2 (encoding for Kv11.1 or hERG channels) and TBX20 (encoding for the transcription factor Tbx20) variants found by next-generation sequencing in two siblings with LQTS in a Spanish family of African ancestry. Affected relatives harbor a heterozygous mutation in KCNH2 that encodes for p.T152HfsX180 Kv11.1 (hERG). This peptide, by itself, failed to generate any current when transfected into Chinese hamster ovary (CHO) cells but, surprisingly, exerted “chaperone-like” effects over native hERG channels in both CHO cells and mouse atrial-derived HL-1 cells. Therefore, heterozygous transfection of native (WT) and p.T152HfsX180 hERG channels generated a current that was indistinguishable from that generated by WT channels alone. Some affected relatives also harbor the p.R311C mutation in Tbx20. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), Tbx20 enhanced human KCNH2 gene expression and hERG currents (IhERG) and shortened action-potential duration (APD). However, Tbx20 did not modify the expression or activity of any other channel involved in ventricular repolarization. Conversely, p.R311C Tbx20 did not increase KCNH2 expression in hiPSC-CMs, which led to decreased IhERG and increased APD. Our results suggest that Tbx20 controls the expression of hERG channels responsible for the rapid component of the delayed rectifier current. On the contrary, p.R311C Tbx20 specifically disables the Tbx20 protranscriptional activity over KCNH2. Therefore, TBX20 can be considered a KCNH2-modifying gene.
Cardiovascular Research | 2014
Ricardo Gómez; Ricardo Caballero; Adriana Barana; Irene Amorós; Sue-Haida De Palm; Marcos Matamoros; Mercedes Núñez; Marta Pérez-Hernández; Isabel Iriepa; Juan Tamargo; Eva Delpón
AIMS We hypothesize that some drugs, besides flecainide, increase the inward rectifier current (IK1) generated by Kir2.1 homotetramers (IKir2.1) and thus, exhibit pro- and/or antiarrhythmic effects particularly at the ventricular level. To test this hypothesis, we analysed the effects of propafenone, atenolol, dronedarone, and timolol on Kir2.x channels. METHODS AND RESULTS Currents were recorded with the patch-clamp technique using whole-cell, inside-out, and cell-attached configurations. Propafenone (0.1 nM-1 µM) did not modify either IK1 recorded in human right atrial myocytes or the current generated by homo- or heterotetramers of Kir2.2 and 2.3 channels recorded in transiently transfected Chinese hamster ovary cells. On the other hand, propafenone increased IKir2.1 (EC50 = 12.0 ± 3.0 nM) as a consequence of its interaction with Cys311, an effect which decreased inward rectification of the current. Propafenone significantly increased mean open time and opening frequency at all the voltages tested, resulting in a significant increase of the mean open probability of the channel. Timolol, which interacted with Cys311, was also able to increase IKir2.1. On the contrary, neither atenolol nor dronedarone modified IKir2.1. Molecular modelling of the Kir2.1-drugs interaction allowed identification of the pharmacophore of drugs that increase IKir2.1. CONCLUSIONS Kir2.1 channels exhibit a binding site determined by Cys311 that is responsible for drug-induced IKir2.1 increase. Drug binding decreases channel affinity for polyamines and current rectification, and can be a mechanism of drug-induced pro- and antiarrhythmic effects not considered until now.
Biochemical Pharmacology | 2013
Irene Amorós; Pablo Dolz-Gaitón; Ricardo Gómez; Marcos Matamoros; Adriana Barana; Marta González de la Fuente; Mercedes Núñez; Marta Pérez-Hernández; Ignacio Moraleda; E. Gálvez; Isabel Iriepa; Juan Tamargo; Ricardo Caballero; Eva Delpón
Human cardiac inward rectifier current (IK1) is generated by Kir2.x channels. Inhibition of IK1 could offer a useful antiarrhythmic strategy against fibrillatory arrhythmias. Therefore, elucidation of Kir2.x channels pharmacology, which still remains elusive, is mandatory. We characterized the electrophysiological and molecular basis of the inhibition produced by the antiarrhythmic propafenone of the current generated by Kir2.x channels (IKir2.x) and the IK1 recorded in human atrial myocytes. Wild type and mutated human Kir2.x channels were transiently transfected in CHO and HEK-293 cells. Macroscopic and single-channel currents were recorded using the patch-clamp technique. At concentrations >1μM propafenone inhibited IKir2.x the order of potency being Kir2.3∼IK1>Kir2.2>Kir2.1 channels. Blockade was irrespective of the extracellular K(+) concentration whereas markedly increased when the intracellular K(+) concentration was decreased. Propafenone decreased inward rectification since at potentials positive to the K(+) equilibrium potential propafenone-induced block decreased in a voltage-dependent manner. Importantly, propafenone favored the occurrence of subconductance levels in Kir2.x channels and decreased phosphatidylinositol 4,5-bisphosphate (PIP2)-channel affinity. Blind docking and site-directed mutagenesis experiments demonstrated that propafenone bound Kir2.x channels at the cytoplasmic domain, close to, but not in the pore itself, the binding site involving two conserved Arg residues (residues 228 and 260 in Kir2.1). Our results suggested that propafenone incorporated into the cytoplasmic domain of the channel in such a way that it decreased the net negative charge sensed by K(+) ions and polyamines which, in turn, promotes the appearance of subconductance levels and the decrease of PIP2 affinity of the channels.
Frontiers in Physiology | 2017
Raquel G. Utrilla; Paloma Nieto-Marín; Silvia Alfayate; David Tinaquero; Marcos Matamoros; Marta Pérez-Hernández; Sandra Sacristán; Lorena Ondo; Raquel de Andrés; F. Javier Díez-Guerra; Juan Tamargo; Eva Delpón; Ricardo Caballero
Cardiac Kir2.1 and Nav1.5 channels generate the inward rectifier K+ (IK1) and the Na+ (INa) currents, respectively. There is a mutual interplay between the ventricular INa and IK1 densities, because Nav1.5 and Kir2.1 channels exhibit positive reciprocal modulation. Here we compared some of the biological properties of Nav1.5 and Kir2.1 channels when they are expressed together or separately to get further insights regarding their putative interaction. First we demonstrated by proximity ligation assays (PLAs) that in the membrane of ventricular myocytes Nav1.5 and Kir2.1 proteins are in close proximity to each other (<40 nm apart). Furthermore, intracellular dialysis with anti-Nav1.5 and anti-Kir2.1 antibodies suggested that these channels form complexes. Patch-clamp experiments in heterologous transfection systems demonstrated that the inhibition of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) decreased the INa and the IK1 generated by Nav1.5 and Kir2.1 channels when they were coexpressed, but not the IK1 generated by Kir2.1 channels alone, suggesting that complexes, but not Kir2.1 channels, are a substrate of CaMKII. Furthermore, inhibition of CaMKII precluded the interaction between Nav1.5 and Kir2.1 channels. Inhibition of 14-3-3 proteins did not modify the INa and IK1 densities generated by each channel separately, whereas it decreased the INa and IK1 generated when they were coexpressed. However, inhibition of 14-3-3 proteins did not abolish the Nav1.5-Kir2.1 interaction. Inhibition of dynamin-dependent endocytosis reduced the internalization of Kir2.1 but not of Nav1.5 or Kir2.1-Nav1.5 complexes. Inhibition of cytoskeleton-dependent vesicular trafficking via the dynein/dynactin motor increased the IK1, but reduced the INa, thus suggesting that the dynein/dynactin motor is preferentially involved in the backward and forward traffic of Kir2.1 and Nav1.5, respectively. Conversely, the dynein/dynactin motor participated in the forward movement of Kir2.1-Nav1.5 complexes. Ubiquitination by Nedd4-2 ubiquitin-protein ligase promoted the Nav1.5 degradation by the proteasome, but not that of Kir2.1 channels. Importantly, the Kir2.1-Nav1.5 complexes were degraded following this route as demonstrated by the overexpression of Nedd4-2 and the inhibition of the proteasome with MG132. These results suggested that Kir2.1 and Nav1.5 channels closely interact with each other leading to the formation of a pool of complexed channels whose biology is similar to that of the Nav1.5 channels.
Circulation Research | 2018
Daniela Ponce-Balbuena; Guadalupe Guerrero-Serna; Carmen R. Valdivia; Ricardo Caballero; F. Javier Díez-Guerra; Eric N. Jiménez-Vázquez; Rafael Ramírez; A.M. Rocha; Todd J. Herron; Katherine Campbell; B. Cicero Willis; Francisco J. Alvarado; Manuel Zarzoso; Kuljeet Kaur; Marta Pérez-Hernández; Marcos Matamoros; Héctor H. Valdivia; Eva Delpón; José Jalife
Rationale: In cardiomyocytes, NaV1.5 and Kir2.1 channels interact dynamically as part of membrane bound macromolecular complexes. Objective: The objective of this study was to test whether NaV1.5 and Kir2.1 preassemble during early forward trafficking and travel together to common membrane microdomains. Methods and Results: In patch-clamp experiments, coexpression of trafficking-deficient mutants Kir2.1&Dgr;314-315 or Kir2.1R44A/R46A with wild-type (WT) NaV1.5WT in heterologous cells reduced inward sodium current compared with NaV1.5WT alone or coexpressed with Kir2.1WT. In cell surface biotinylation experiments, expression of Kir2.1&Dgr;314-315 reduced NaV1.5 channel surface expression. Glycosylation analysis suggested that NaV1.5WT and Kir2.1WT channels associate early in their biosynthetic pathway, and fluorescence recovery after photobleaching experiments demonstrated that coexpression with Kir2.1 increased cytoplasmic mobility of NaV1.5WT, and vice versa, whereas coexpression with Kir2.1&Dgr;314-315 reduced mobility of both channels. Viral gene transfer of Kir2.1&Dgr;314-315 in adult rat ventricular myocytes and human induced pluripotent stem cell–derived cardiomyocytes reduced inward rectifier potassium current and inward sodium current, maximum diastolic potential and action potential depolarization rate, and increased action potential duration. On immunostaining, the AP1 (adaptor protein complex 1) colocalized with NaV1.5WT and Kir2.1WT within areas corresponding to t-tubules and intercalated discs. Like Kir2.1WT, NaV1.5WT coimmunoprecipitated with AP1. Site-directed mutagenesis revealed that NaV1.5WT channels interact with AP1 through the NaV1.5Y1810 residue, suggesting that, like for Kir2.1WT, AP1 can mark NaV1.5 channels for incorporation into clathrin-coated vesicles at the trans-Golgi. Silencing the AP1 υ-adaptin subunit in human induced pluripotent stem cell–derived cardiomyocytes reduced inward rectifier potassium current, inward sodium current, and maximum diastolic potential and impaired rate-dependent action potential duration adaptation. Conclusions: The NaV1.5-Kir2.1 macromolecular complex pre-assembles early in the forward trafficking pathway. Therefore, disruption of Kir2.1 trafficking in cardiomyocytes affects trafficking of NaV1.5, which may have important implications in the mechanisms of arrhythmias in inheritable cardiac diseases.
JCI insight | 2018
Marta Pérez-Hernández; Marcos Matamoros; Silvia Alfayate; Paloma Nieto-Marín; Raquel G. Utrilla; David Tinaquero; Raquel de Andrés; Teresa Crespo; Daniela Ponce-Balbuena; B. Cicero Willis; Eric N. Jiménez-Vázquez; Guadalupe Guerrero-Serna; A.M. Rocha; Katherine Campbell; Todd J. Herron; F. Javier Díez-Guerra; Juan Tamargo; José Jalife; Ricardo Caballero; Eva Delpón
Cardiac Nav1.5 and Kir2.1-2.3 channels generate Na (INa) and inward rectifier K (IK1) currents, respectively. The functional INa and IK1 interplay is reinforced by the positive and reciprocal modulation between Nav15 and Kir2.1/2.2 channels to strengthen the control of ventricular excitability. Loss-of-function mutations in the SCN5A gene, which encodes Nav1.5 channels, underlie several inherited arrhythmogenic syndromes, including Brugada syndrome (BrS). We investigated whether the presence of BrS-associated mutations alters IK1 density concomitantly with INa density. Results obtained using mouse models of SCN5A haploinsufficiency, and the overexpression of native and mutated Nav1.5 channels in expression systems - rat ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) - demonstrated that endoplasmic reticulum (ER) trafficking-defective Nav1.5 channels significantly decreased IK1, since they did not positively modulate Kir2.1/2.2 channels. Moreover, Golgi trafficking-defective Nav1.5 mutants produced a dominant negative effect on Kir2.1/2.2 and thus an additional IK1 reduction. Moreover, ER trafficking-defective Nav1.5 channels can be partially rescued by Kir2.1/2.2 channels through an unconventional secretory route that involves Golgi reassembly stacking proteins (GRASPs). Therefore, cardiac excitability would be greatly affected in subjects harboring Nav1.5 mutations with Golgi trafficking defects, since these mutants can concomitantly trap Kir2.1/2.2 channels, thus unexpectedly decreasing IK1 in addition to INa.
Cardiovascular Research | 2016
Marcos Matamoros; Marta Pérez-Hernández; Guadalupe Guerrero-Serna; Irene Amorós; Adriana Barana; Mercedes Núñez; Daniela Ponce-Balbuena; Sandra Sacristán; Ricardo Gómez; Juan Tamargo; Ricardo Caballero; José Jalife; Eva Delpón