Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcos Meuser Batista is active.

Publication


Featured researches published by Marcos Meuser Batista.


Antimicrobial Agents and Chemotherapy | 2008

In Vitro and In Vivo Studies of the Trypanocidal Activity of a Diarylthiophene Diamidine against Trypanosoma cruzi

Cristiane França da Silva; Marcos Meuser Batista; Denise da Gama Jaen Batista; Elen Mello de Souza; Patricia Bernardino da Silva; Gabriel Melo de Oliveira; Andrea Souza Meuser; Abdur-Rafay Shareef; David W. Boykin; Maria de Nazaré C. Soeiro

ABSTRACT Aromatic diamidines are DNA minor groove-binding ligands that display excellent antimicrobial activity against fungi, bacteria, and protozoa. Due to the currently unsatisfactory chemotherapy for Chagas’ disease and in view of our previous reports regarding the effect of diamidines and analogues against both in vitro and in vivo Trypanosoma cruzi infection, this study evaluated the effects of a diarylthiophene diamidine (DB1362) against both amastigotes and bloodstream trypomastigotes of T. cruzi, the etiological agent of Chagas’ disease. The data show the potent in vitro activity of DB1362 against both parasite forms that are relevant for mammalian infection at doses which do not exhibit cytotoxicity. Ultrastructural analysis and flow cytometry studies show striking alterations in the nuclei and mitochondria of the bloodstream parasites. In vivo studies were performed at two different drug concentrations (25 and 50 mg/kg/day) using a 2-day or a 10-day regimen. The best results were obtained when acutely infected mice were treated with two doses at the lower concentration, resulting in 100% survival, compared to the infected and untreated mice. Although it did not display higher efficacy than benznidazole, DB1362 reduced both cardiac parasitism and inflammation, and in addition, it protected against the cardiac alterations (determined by measurements) common in T. cruzi infection. These results support further investigation of diamidines and related compounds as potential agents against Chagas’ disease.


Antimicrobial Agents and Chemotherapy | 2013

In Vitro and In Vivo Studies of the Antiparasitic Activity of Sterol 14α-Demethylase (CYP51) Inhibitor VNI against Drug-Resistant Strains of Trypanosoma cruzi

Maria de Nazaré C. Soeiro; Elen Mello de Souza; Cristiane França da Silva; Denise da Gama Jaen Batista; Marcos Meuser Batista; Beatriz Philot Pavão; Julianna Siciliano De Araújo; Claudia Alessandra Fortes Aiub; Patricia Bernardino da Silva; Jessica Lionel; Constança Britto; Kwangho Kim; Gary A. Sulikowski; Tatiana Y. Hargrove; Michael R. Waterman; Galina I. Lepesheva

ABSTRACT Chagas disease affects more than 10 million people worldwide, and yet, as it has historically been known as a disease of the poor, it remains highly neglected. Two currently available drugs exhibit severe toxicity and low effectiveness, especially in the chronic phase, while new drug discovery has been halted for years as a result of a lack of interest from pharmaceutical companies. Although attempts to repurpose the antifungal drugs posaconazole and ravuconazole (inhibitors of fungal sterol 14α-demethylase [CYP51]) are finally in progress, development of cheaper and more efficient, preferably Trypanosoma cruzi-specific, chemotherapies would be highly advantageous. We have recently reported that the experimental T. cruzi CYP51 inhibitor VNI cures with 100% survival and 100% parasitological clearance both acute and chronic murine infections with the Tulahuen strain of T. cruzi. In this work, we further explored the potential of VNI by assaying nitro-derivative-resistant T. cruzi strains, Y and Colombiana, in highly stringent protocols of acute infection. The data show high antiparasitic efficacy of VNI and its derivative (VNI/VNF) against both forms of T. cruzi that are relevant for mammalian host infection (bloodstream and amastigotes), with the in vivo potency, at 25 mg/kg twice a day (b.i.d.), similar to that of benznidazole (100 mg/kg/day). Transmission electron microscopy and reverse mutation tests were performed to explore cellular ultrastructural and mutagenic aspects of VNI, respectively. No mutagenic potential could be seen by the Ames test at up to 3.5 μM, and the main ultrastructural damage induced by VNI in T. cruzi was related to Golgi apparatus and endoplasmic reticulum organization, with membrane blebs presenting an autophagic phenotype. Thus, these preliminary studies confirm VNI as a very promising trypanocidal drug candidate for Chagas disease therapy.


Memorias Do Instituto Oswaldo Cruz | 2009

Experimental chemotherapy for Chagas disease: 15 years of research contributions from in vivo and in vitro studies

Maria de Nazaré C. Soeiro; Andreia P. Dantas; Anissa Daliry; Cristiane França da Silva; Denise da Gama Jaen Batista; Elen Mello de Souza; Gabriel Melo de Oliveira; Kelly Salomão; Marcos Meuser Batista; Michelle G.O Pacheco; Patricia Bernardino da Silva; Ricardo M Santa-Rita; Rubem F.S. Menna Barreto; David W. Boykin; Solange L. de Castro

Chagas disease, which is caused by the intracellular parasite Trypanosoma cruzi, is a neglected illness with 12-14 million reported cases in endemic geographic regions of Latin America. While the disease still represents an important public health problem in these affected areas, the available therapy, which was introduced more than four decades ago, is far from ideal due to its substantial toxicity, its limited effects on different parasite stocks, and its poor activity during the chronic phase of the disease. For the past 15 years, our group, in collaboration with research groups focused on medicinal chemistry, has been working on experimental chemotherapies for Chagas disease, investigating the biological activity, toxicity, selectivity and cellular targets of different classes of compounds on T. cruzi. In this report, we present an overview of these in vitro and in vivo studies, focusing on the most promising classes of compounds with the aim of contributing to the current knowledge of the treatment of Chagas disease and aiding in the development of a new arsenal of candidates with anti-T. cruzi efficacy.


International Journal of Experimental Pathology | 2002

Evidence for a perforin-mediated mechanism controlling cardiac inflammation in Trypanosoma cruzi infection

Andrea Henriques-Pons; Gabriel Melo de Oliveira; Mauricio M. Paiva; Alexandre Felip S. Correa; Marcos Meuser Batista; Rodrigo C. Bisaggio; Chau-Ching Liu; Vinícius Cotta-de-Almeida; Claudia Mara Lara Melo Coutinho; Pedro M. Persechini; Tania C. de Araújo-Jorge

Summary.  CD8+ T lymphocytes are considered an important cell population involved in the control of parasitaemia and mortality after Trypanosoma cruzi infection. However, despite recent developments in this field, the mechanism whereby this control is exerted is still not completely understood. Here we have used perforin knockout (–/–) mice infected with Y strain T. cruzi in order to evaluate specifically the participation of the perforin‐based cytotoxic pathway in the destruction of cardiomyocytes, cellular inflammatory infiltration, and control of parasitaemia and mortality. We observed that although parasitaemia was equivalent in perforin (+/+) and (–/–) groups, survival rate and spontaneous physical performance were significantly lower in the perforin deficient mice. The cardiac inflammatory cell infiltration, mostly composed of CD8+ cells, was more evident in perforin (–/–) mice. Ultrastructural and immunofluorescence analysis, as well as plasma creatine kinase activity, revealed cardiomyocyte damage and necrosis, more evident in perforin (–/–) mice. Terminal deoxynucleotidyl transferase‐mediated dUTP nick end labelling (TUNEL) assays performed in heart samples revealed similar and modest levels of apoptosis in both perforin (+/+) and (–/–) mice. These results indicate that perforin does not play a pivotal role in the control of parasitaemia and direct lysis of cardiomyocytes, but seems to be an important molecule involved in the control of cardiac inflammation and pathology induced by a highly virulent strain of T. cruzi.


Experimental Parasitology | 2009

Trypanosoma cruzi: Activity of heterocyclic cationic molecules in vitro

Michele Gabriele de Oliveira Pacheco; Cristiane França da Silva; Elen Mello de Souza; Marcos Meuser Batista; Patricia Bernardino da Silva; Arvind Kumar; Chad E. Stephens; David W. Boykin; Maria de Nazaré C. Soeiro

Chagas disease remains a serious public health problem in several Latin American countries. New chemotherapy is urgently needed since current drugs are limited in efficacy and exhibit undesirable side effects. Aromatic diamidines and analogs are well known anti-parasitic agents and in this study, we have evaluated the in vitro trypanocidal effect of several different heterocyclic cationic compounds, including diamidines (DB1195, DB1196 and DB1345), a monoamidine (DB824), an arylimidamide (DB613A) and a guanylhydrazone (DB1080) against amastigotes and bloodstream trypomastigotes of Trypanosoma cruzi, the etiological agent of Chagas disease. Our present findings showed that all compounds exerted, at low-micromolar doses, a trypanocidal effect upon both intracellular parasites and bloodstream trypomastigotes of T. cruzi. The activity of DB1195, DB1345, DB824 and DB1080 against bloodstream forms was reduced when these compounds were assayed in the presence of mouse blood possibly due to their association with plasma constituents and/or due to metabolic instability of the compounds. However, trypanocidal effects of DB613A and DB1196 were not affected by plasma constituents, suggesting their potential application in the prophylaxis of banked blood. In addition, potency and selectivity of DB613A, towards intracellular parasites, corroborate previous results that demonstrated the highly promising activity of arylimidamides against this parasite, which justify further studies in experimental models of T. cruzi infection.


Journal of Antimicrobial Chemotherapy | 2009

In vitro analyses of the effect of aromatic diamidines upon Trypanosoma cruzi

Anissa Daliry; Patricia Bernardino da Silva; Cristiane França da Silva; Marcos Meuser Batista; Solange L. de Castro; Richard R. Tidwell; Maria de Nazaré C. Soeiro

OBJECTIVES Aromatic diamidines (ADs) have been recognized as promising antiparasitic agents. Therefore, in the present work, the in vitro trypanocidal effect of 11 ADs upon the relevant clinical forms of Trypanosoma cruzi was evaluated, as well as determining their toxicity to mammalian cells and their subcellular localization. METHODS The trypanocidal effect upon trypomastigotes and amastigotes was evaluated by light microscopy through the determination of the IC(50) values. The cytotoxicity was determined by the MTT colorimetric assay against mouse cardiomyocytes. For the subcellular localization, transmission electron microscopy and fluorescence approaches were used. The fluorescence intensity within the kinetoplast DNA (kDNA) and nuclear DNA (nDNA) of treated parasites was determined using the Image J program. RESULTS Compounds 2, 5 and 7 showed the lowest IC(50) values (micromolar range) against intracellular amastigotes and trypomastigotes. In the presence of blood, all the tested ADs exhibited a reduction of their activity. The compounds did not exhibit toxicity to cardiac cells and the highest selectivity index (SI) was achieved by compound 5 with an SI of >137 for trypomastigotes and compound 7 with an SI of >107 for intracellular parasites. The subcellular effects upon bloodstream forms treated with compounds 5 and 7 were mainly on kDNA, leading to its disorganization. The higher accumulation in the kDNA observed for all tested ADs was not directly related to their efficacy. CONCLUSIONS Our results show the high activity of this new series of ADs against both trypomastigote and amastigote forms, with excellent SIs, especially compound 7, which merits further in vivo evaluation.


PLOS ONE | 2011

Combined treatment of heterocyclic analogues and benznidazole upon Trypanosoma cruzi in vivo

Denise da Gama Jaen Batista; Marcos Meuser Batista; Gabriel Melo de Oliveira; Constança Britto; Ana Carolina Mondaine Rodrigues; Chad E. Stephens; David W. Boykin; Maria de Nazaré C. Soeiro

Chagas disease caused by Trypanosoma cruzi is an important cause of mortality and morbidity in Latin America but no vaccines or safe chemotherapeutic agents are available. Combined therapy is envisioned as an ideal approach since it may enhance efficacy by acting upon different cellular targets, may reduce toxicity and minimize the risk of drug resistance. Therefore, we investigated the activity of benznidazole (Bz) in combination with the diamidine prodrug DB289 and in combination with the arylimidamide DB766 upon T. cruzi infection in vivo. The oral treatment of T.cruzi-infected mice with DB289 and Benznidazole (Bz) alone reduced the number of circulating parasites compared with untreated mice by about 70% and 90%, respectively. However, the combination of these two compounds decreased the parasitemia by 99% and protected against animal mortality by 100%, but without providing a parasitological cure. When Bz (p.o) was combined with DB766 (via ip route), at least a 99.5% decrease in parasitemia levels was observed. DB766+Bz also provided 100% protection against mice mortality while Bz alone provided about 87% protection. This combined therapy also reduced the tissular lesions induced by T. cruzi infection: Bz alone reduced GPT and CK plasma levels by about 12% and 78% compared to untreated mice group, the combination of Bz with DB766 resulted in a reduction of GPT and CK plasma levels of 56% and 91%. Cure assessment through hemocultive and PCR approaches showed that Bz did not provide a parasitological cure, however, DB766 alone or associated with Bz cured ≥13% of surviving animals.


Memorias Do Instituto Oswaldo Cruz | 2009

Inhibition of Trypanosoma cruzi proline racemase affects host-parasite interactions and the outcome of in vitro infection

Letícia Lopes Coutinho; Marcelo Alves Ferreira; Alain Cosson; Marcos Meuser Batista; Denise da Gama Jaen Batista; Paola Minoprio; Wim Degrave; Armand Berneman; Maria de Nazaré C. Soeiro

Proline racemase is an important enzyme of Trypanosoma cruzi and has been shown to be an effective mitogen for B cells, thus contributing to the parasites immune evasion and persistence in the human host. Recombinant epimastigote parasites overexpressing TcPRAC genes coding for proline racemase present an augmented ability to differentiate into metacyclic infective forms and subsequently penetrate host-cells in vitro. Here we demonstrate that both anti T. cruzi proline racemase antibodies and the specific proline racemase inhibitor pyrrole-2-carboxylic acid significantly affect parasite infection of Vero cells in vitro. This inhibitor also hampers T. cruzi intracellular differentiation.


American Journal of Pathology | 2011

Mast cell function and death in Trypanosoma cruzi infection

Marcelo Meuser-Batista; José R. Corrêa; Vinicius F. Carvalho; Constança Britto; Otacilio C. Moreira; Marcos Meuser Batista; Maurilio J. Soares; Francisco Alves Farias Filho; Patrícia M.R. e Silva; Joseli Lannes-Vieira; Robson Coutinho Silva; Andrea Henriques-Pons

Although the roles of mast cells (MCs) are essential in many inflammatory and fibrotic diseases, their role in Trypanosoma cruzi-induced cardiomyopathy is unexplored. In this study, we treated infected CBA mice with cromolyn, an MC stabilizer, and observed much greater parasitemia and interferon-γ levels, higher mortality, myocarditis, and cardiac damage. Although these data show that MCs are important in controlling acute infection, we observed MC apoptosis in the cardiac tissue and peritoneal cavity of untreated mice. In the heart, pericardial mucosal MC die, perhaps because of reduced amounts of local stem cell factor. Using RT-PCR in purified cardiac MCs, we observed that infection induced transcription of P2X(7) receptor and Fas, two molecules reportedly involved in cell death and inflammatory regulation. In gld/gld mice (FasL(-/-)), apoptosis of cardiac, but not peritoneal, MCs was decreased. Conversely, infection of P2X(7)(-/-) mice led to reduced peritoneal, but not cardiac, MC death. These data illustrate the immunomodulatory role played by MCs in T. cruzi infection and the complexity of molecular interactions that control inflammatory pathways in different tissues and compartments.


Antimicrobial Agents and Chemotherapy | 2013

Activities of Psilostachyin A and Cynaropicrin against Trypanosoma cruzi In Vitro and In Vivo

Cristiane França da Silva; Denise da Gama Jaen Batista; Julianna Siciliano De Araújo; Marcos Meuser Batista; Jessica Lionel; Elen Mello de Souza; Erica Ripoll Hammer; Patricia Bernardino da Silva; Maria De Mieri; Michael Adams; Stefanie Zimmermann; Matthias Hamburger; Reto Brun; Wolfgang Schühly; Maria de Nazaré C. Soeiro

ABSTRACT In vitro and in vivo activities against Trypanosoma cruzi were evaluated for two sesquiterpene lactones: psilostachyin A and cynaropicrin. Cynaropicrin had previously been shown to potently inhibit African trypanosomes in vivo, and psilostachyin A had been reported to show in vivo effects against T. cruzi, albeit in another test design. In vitro data showed that cynaropicrin was more effective than psilostachyin A. Ultrastructural alterations induced by cynaropicrin included shedding events, detachment of large portions of the plasma membrane, and vesicular bodies and large vacuoles containing membranous structures, suggestive of parasite autophagy. Acute toxicity studies showed that one of two mice died at a cynaropicrin dose of 400 mg/kg of body weight given intraperitoneally (i.p.). Although no major plasma biochemical alterations could be detected, histopathology demonstrated that the liver was the most affected organ in cynaropicrin-treated animals. Although cynaropicrin was as effective as benznidazole against trypomastigotes in vitro, the treatment (once or twice a day) of T. cruzi-infected mice (up to 50 mg/kg/day cynaropicrin) did not suppress parasitemia or protect against mortality induced by the Y and Colombiana strains. Psilostachyin A (0.5 to 50 mg/kg/day given once a day) was not effective in the acute model of T. cruzi infection (Y strain), reaching 100% animal mortality. Our data demonstrate that although it is very promising against African trypanosomes, cynaropicrin does not show efficacy compared to benznidazole in acute mouse models of T. cruzi infection.

Collaboration


Dive into the Marcos Meuser Batista's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia Gómez-Barrio

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Cristina Fonseca-Berzal

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

José Antonio Escario

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge