Marcos Paradelo
University of Vigo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcos Paradelo.
Water Research | 2011
Dengjun Wang; Marcos Paradelo; Scott A. Bradford; Willie J.G.M. Peijnenburg; Lingyang Chu; Dong-Mei Zhou
Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0-100 mM) or CaCl(2) (0.1-1.0 mM). The experimental breakthrough curves and retention profiles of nHAP were well described using a mathematical model that accounted for two kinetic retention sites. The retention coefficients for both sites increased with the ionic strength (IS) of a particular salt. However, the amount of nHAP retention was more sensitive to increases in the concentration of divalent Ca(2+) than monovalent Na(+). The effluent concentration of Cu that was associated with nHAP decreased significantly from 2.62 to 0.17 mg L(-1) when NaCl increased from 0 to 100 mM, and from 1.58 to 0.16 mg L(-1) when CaCl(2) increased from 0.1 to 1.0 mM. These trends were due to enhanced retention of nHAP with changes in IS and ionic composition (IC) due to compression of the double layer thickness and reduction of the magnitude of the zeta potentials. Results indicate that the IS and IC had a strong influence on the co-transport behavior of contaminants with nHAP nanoparticles.
Journal of Colloid and Interface Science | 2011
Dengjun Wang; Lingyang Chu; Marcos Paradelo; Willie J.G.M. Peijnenburg; Yu-Jun Wang; Dong-Mei Zhou
The surfaces of nano-hydroxyapatite (nHAP) used for contaminated soil and groundwater remediation may be modified to render nHAP highly mobile in the subsurface. Humic acid (HA) is widely used to modify and stabilize colloid suspensions. In this work, column experiments were conducted to determine the effects of contaminant (e.g., Cu) concentration, ionic strength (IS), and ion composition (IC) on the transport behavior of HA-modified nHAP in saturated packed columns. IS and nature of the cation had strong effects on the deposition of nHAP, and the effect was greater for divalent than for monovalent cations. Divalent cations have a greater capacity to screen the surface charge of nHAP, and Ca(2+) bridges the HA-modified nHAP colloidal particles, which causes greater deposition. Moreover, Cu(2+) had a greater effect on the transport behavior than Ca(2+) due to their strong exchange with Ca(2+) of nHAP and its surface complexation with nHAP. The relative travel distance L(T), of the injected HA-modified nHAP colloids, ranges from less than one to several meters at varying Cu concentrations, ISs, and ICs in saturated packed columns. The results are crucial to evaluate the efficacy of nHAP on the remediation of contaminated soil and groundwater environments.
Soil Science Society of America Journal | 2012
Dengjun Wang; Scott A. Bradford; Marcos Paradelo; Willie J.G.M. Peijnenburg; Dong-Mei Zhou
375 Soil Sci. Soc. Am. J. 76:375–388 Posted online 20 Dec. 2011 doi:10.2136/sssaj 2011.0203 Received 3 June 2011 *Corresponding author ([email protected])
Journal of Hazardous Materials | 2010
Eva Pose-Juan; Raquel Rial-Otero; Marcos Paradelo; J. Simal-Gándara; M. Arias; J.E. López-Periago
The objective of this work is to asses the sorption of metalaxyl applied as a copper oxychloride (CO)-metalaxyl formulation, for a set of selected soils devoted to vineyards. The method involved batch incubation of soils suspended with a commercial copper oxychloride-metalaxyl-based fungicide in 0.01M CaCl(2). Afterwards, the metalaxyl concentration remaining in solution was determined by high-performance liquid chromatography (HPLC). The amount of dissolved metalaxyl in the fungicide suspension depends mainly on the soil pH, its potential acidity, and the cation exchange capacity. Of the approx. 20% metalaxyl retained by the solid colloids, the effect of organic matter colloids in soils (15-20 mg kg(-1)) had a poor contribution (six times lower) than the copper oxychloride colloids (40%, w/w) in the commercial fungicide formulation (100-130 mg kg(-1)). When comparing these retention data with the behaviour of metalaxyl used as a technical grade fungicide of about 100% purity (10-15 mg kg(-1) in solids), it is clear that the commercial formulation increases a 30% retention of metalaxyl by soil (15-20 mg kg(-1) in solids). The overall effect of the metalaxyl formulation plus soil show values of 10 times higher retention than technical grade-metalaxyl plus soil. Commercial formulation can decrease the mobility of soluble metalaxyl in agricultural soils with regard to the expected values obtained from batch studies using analytical grade-metalaxyl. Therefore, the effect of surfactants should be considered in the assessment of water contamination by the pesticides used in agriculture.
Journal of Agricultural and Food Chemistry | 2008
Marcos Paradelo; Manuel Arias-Estévez; Juan Carlos Nóvoa-Muñoz; Paula Pérez-Rodríguez; Ana Torrado-Agrasar; J. Eugenio López-Periago
Foliar washoff causes a loss of copper-based pesticides sprayed on crops, leading to an increase in the number of applications and contamination of the soil with Cu. In field studies, the variables that determine the amount of Cu loss are difficult to control. An experimental setup based on a rotating shear device (RSD) was used to estimate the influence of physical factors in the loss of Cu due to washoff of three copper-based fungicides: copper oxychlorhide (CO), Bordeaux mixture (BM), and a mixture of copper oxychlorhide and propylene glycol (CO-PG). Full factorial designs were used to model the loss of Cu from fungicides sprayed on the polypropylene surface of the RSD. Variables in the experiments were rotation speed, wash water volume, and fungicide dose. Good reproducibility was obtained for Cu loss, with a coefficient of variation less than 8%. Mean Cu losses were 27.0, 33.0, and 13.5% of the copper applied in fungicide for the BM, CO, and CO-PG, respectively. Empirical equations were obtained to calculate Cu losses from the rotation speed, wash water volume, and dose, as well as their interactions. CO losses were consistent with a model of particle detachment in which such losses depended on a threshold boundary shear stress required to initiate particle motion. Also, percent CO losses were found to be significantly correlated with the linear momentum at the surface boundary. The momentum values obtained in the RSD tests were similar to those estimated for a rainfall event of 20 mm h(-1) lasting 10 min. The most important mechanism in the loss of CO was the erosion of Cu-bearing particles.
Journal of Environmental Quality | 2014
K. G. I. D. Kumari; Per Moldrup; Marcos Paradelo; Lars Elsgaard; Henrik Hauggaard-Nielsen; Lis Wollesen de Jonge
Application of biochar to agricultural fields to improve soil quality has increased in popularity in recent years, but limited attention is generally paid to existing field conditions before biochar application. This study examined the short-term physicochemical effects of biochar amendment in an agricultural field in Denmark with a calcium carbonate (CaCO) gradient. The field comprised four reference plots and four plots to which biochar (birch wood pyrolyzed at 500°C) was applied at a rate of 20 t ha. Five undisturbed soil columns (10 cm diam., 8 cm height) were sampled from each plot 7 mo after biochar application, and a series of leaching experiments was conducted. The leachate was analyzed for tritium (used as a tracer), colloids, and phosphorus concentration. The results revealed that the presence of CaCO has resulted in marked changes in soil structure (bulk density) and soil chemical properties (e.g., pH and ionic strength), which significantly affected air and water transport and colloid and phosphorous leaching. In denser soils (bulk density, 1.57-1.69 g cm) preferential flow dominated the transport and caused an enhanced movement of air and water, whereas in less dense soils (bulk density, 1.38-1.52 g cm) matrix flow predominated the transport. Compared with reference soils, biochar-amended soils showed slightly lower air permeability and a shorter travel time for 5% of the applied tracer (tritium) to leach through the soil columns. Colloid and phosphorus leaching was observed to be time dependent in soils with low CaCO. Biochar-amended soils showed higher colloid and P release than reference soils. Field-scale variations in total colloid and P leaching reflected clear effects of changes in pH and ionic strength due to the presence of CaCO. There was a linear relationship between colloid and P concentrations in the leachate, suggesting that colloid-facilitated P leaching was the dominant P transport mechanism.
Journal of Environmental Quality | 2013
Marcos Paradelo; Per Moldrup; Emmanuel Arthur; Muhammad Naveed; Martin Holmstrup; J.E. López-Periago; Lis Wollesen de Jonge
Copper contamination affects biological, chemical, and physical soil properties and associated ecological functions. Changes in soil pore organization as a result of Cu contamination can dramatically affect flow and contaminant transport in polluted soils. This study assessed the influence of soil structure on the movement of water and Cu in a long-term polluted soil. Undisturbed soil cores collected along a Cu gradient (from about 20 to about 3800 mg Cu kg soil) were scanned using X-ray computed tomography (CT). Leaching experiments were performed to analyze tracer transport, colloid leaching, and dissolved organic carbon (DOC) and Cu losses. The 5% arrival time () and apparent dispersivity (λ) for tracer breakthrough were calculated by fitting the experimental data to a nonparametric, double-lognormal probability density function. Soil bulk density, which did not follow the Cu gradient, was the main driver of preferential flow, while macroporosity determined by X-ray CT (for pores >180 μm) proved the best predictor of solute transport. Higher preferential flow due to the presence of well-aligned pores and small cracks controlled water movement in compacted soil. Transport of Cu was rapid during the first flush (≈1 pore volume) in association with the movement of colloid particles, followed by slower transport in association with the movement of DOC in the soil solution. The relative amount of Cu released was strongly correlated with macroporosity as determined by X-ray CT, indicating the promising potential of this visualization technique for predicting contaminant transport through soil.
Journal of Agricultural and Food Chemistry | 2009
Eva Pose; Raquel Rial-Otero; Marcos Paradelo; J. Eugenio López-Periago
The objective of this work was to assess the sorption of copper (Cu) applied as a Cu-oxychloride metalaxyl formulation by soils characterized by anthropogenic accumulation of Cu due to agricultural activity. The methods involved batch incubation of soils with a Cu-oxychloride metalaxy-based fungicide suspended in 0.01 M CaCl(2), phase separation, and determination of the concentration of Cu (Cu) in solution. Results showed that specific soil properties influenced solubilization of the Cu from the fungicide. The amount of dissolved Cu depended on the soil pH, its potential acidity, and its cation exchange capacity. The amount of anthropogenic Cu in the soil had a minor influence on soluble Cu after the addition of the fungicide. Thus, Cu-based antifungal treatment can increase the local concentration of soluble Cu in acid soils but is not likely to affect the [Cu] in moderately acidic or neutral soils.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2013
Paula Pérez-Rodríguez; Marcos Paradelo; Isabel Rodríguez-Salgado; David Fernández-Calviño; J.E. López-Periago
Modeling the pesticide wash-off by raindrops is important for predicting pesticide losses and the subsequent transport of pesticides to soil and in soil run-off. Three foliar-applied copper-based fungicide formulations, specifically the Bordeaux mixture (BM), copper oxychloride (CO), and a mixture of copper oxychloride and propylene glycol (CO-PG), were tested on potato (Solanum tuberosum L.) leaves using a laboratory raindrop simulator. The losses in the wash-off were quantified as both copper in-solution loss and copper as particles detached by the raindrops. The efficiency of the raindrop impact on the wash-off was modeled using a stochastic model based on the pesticide release by raindrops. In addition, the influence of the raindrop size, drop falling height, and fungicide dose was analyzed using a full factorial experimental design. The average losses per dose after 14 mm of dripped water for a crop with a leaf area index equal to 1 were 0.08 kg Cu ha−1 (BM), 0.3 kg Cu ha−1 (CO) and 0.47 kg Cu ha−1 (CO-PG). The stochastic model was able to simulate the time course of the wash-off losses and to estimate the losses of both Cu in solution and as particles by the raindrop impacts. For the Cu-oxychloride fungicides, the majority of the Cu was lost as particles that detached from the potato leaves. The percentage of Cu lost increased with the decreasing raindrop size in the three fungicides for the same amount of dripped water. This result suggested that the impact energy is not a limiting factor in the particle detachment rate of high doses. The dosage of the fungicide was the most influential factor in the losses of Cu for the three formulations studied. The results allowed us to quantify the factors that should be considered when estimating the losses by the wash-off of copper-based fungicides and the inputs of copper to the soil by raindrop wash-off.
Journal of Contaminant Hydrology | 2016
Dan Karup; Per Moldrup; Marcos Paradelo; Sheela Katuwal; Trine Norgaard; Mogens Humlekrog Greve; Lis Wollesen de Jonge
Solute transport through the soil matrix is non-uniform and greatly affected by soil texture, soil structure, and macropore networks. Attempts have been made in previous studies to use infiltration experiments to identify the degree of preferential flow, but these attempts have often been based on small datasets or data collected from literature with differing initial and boundary conditions. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. From six agricultural fields in Denmark, 193 intact surface soil columns 20cm in height and 20cm in diameter were collected. The soils exhibited a wide range in texture, with clay and organic carbon (OC) contents ranging from 0.03 to 0.41 and 0.01 to 0.08kgkg(-1), respectively. All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being near normally distributed to gradually skewed to the right along with an increase in the content of the mineral fines (particles ≤50μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curves (BTCs), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5% and up to 50% of the tracer mass were found to be strongly correlated with volumetric fines content. Predicted tracer concentration breakthrough points as a function of time up to 50% of applied tracer mass could be well fitted to an analytical solution to the classical advection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer mass. The new concept seems promising as a platform towards more accurate proxy functions for dissolved contaminant transport in intact soil.