Marcos R.V. Lanza
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcos R.V. Lanza.
Food Chemistry | 2012
Ivana Cesarino; Fernando C. Moraes; Marcos R.V. Lanza; Sergio Machado
A sensitive electrochemical acetylcholinesterase (AChE) biosensor was successfully developed on polyaniline (PANI) and multi-walled carbon nanotubes (MWCNTs) core-shell modified glassy carbon electrode (GC), and used to detect carbamate pesticides in fruit and vegetables (apple, broccoli and cabbage). The pesticide biosensors were applied in the detection of carbaryl and methomyl pesticides in food samples using chronoamperometry (CA). The GC/MWCNT/PANI/AChE biosensor exhibited detection limits of 1.4 and 0.95μmolL(-1), respectively, for carbaryl and methomyl. These detection limits were below the allowable concentrations set by Brazilian regulation standards for the samples in which these pesticides were analysed. Reproducibility and repeatability values of 2.6% and 3.2%, respectively, were obtained in the conventional procedure. The proposed biosensor was successfully applied in the determination of carbamate pesticides in cabbage, broccoli and apple samples without any spiking procedure. The obtained results were in full agreement with those from the HPLC procedure.
Journal of Hazardous Materials | 2011
Fernanda Lanzoni Migliorini; N.A. Braga; Suellen A. Alves; Marcos R.V. Lanza; M.R. Baldan; N.G. Ferreira
Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 × 10(21)atoms cm(-3), respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Ramans spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (111) and (100). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process.
Chemosphere | 2014
Juliana R. Steter; Willyam R.P. Barros; Marcos R.V. Lanza; Artur J. Motheo
Amaranth dye is an organic compound largely used in the food and beverage industries with potential toxicity effects on humans. It can be found as a pollutant species in aquatic environments and has been classified as an endocrine disruptor. This study describes amaranth degradation upon ultrasonication associated with an electrochemical system that uses a boron-doped diamond anode BDD, defined as a sonoelectrochemical process. Ninety-minute electrolyses were performed using current densities in the 10-50 mA cm(-2) range, and the concentration decay, pH, energy and current efficiencies, as well as the discoloration rate were evaluated. The amaranth concentration decayed as a function of electrolysis time and the reactions obeyed pseudo first-order kinetics, with an apparent constant rate between 10(-1) and 10(-3)min(-1). The electrochemical and sonoelectrochemical processes at 35 mA cm(-2) yielded TOC removal values between 92.1% and 95.1% respectively, after 90 min. Current efficiency values obtained for both processes were 18.2% and 23.6%. Exhaustive 5h electrolysis was performed and the degradation products were identified by HPLC-MS. A mechanism for the degradation of amaranth was proposed based on an analysis of the aromatic and aliphatic intermediates.
Chemosphere | 2012
Suellen A. Alves; Tanare C.R. Ferreira; N.S. Sabatini; A.C.A. Trientini; F.L. Migliorini; M.R. Baldan; N.G. Ferreira; Marcos R.V. Lanza
The thiadiazolylurea derivative tebuthiuron (TBH) is commonly used as an herbicide even though it is highly toxic to humans. While various processes have been proposed for the removal of organic contaminants of this type from wastewater, electrochemical degradation has shown particular promise. The aim of the present study was to investigate the electrochemical degradation of TBH using anodes comprising boron-doped (5000 and 30,000 ppm) diamond (BDD) films deposited onto Ti substrates operated at current densities in the range 10-200 mA cm(-2). Both anodes removed TBH following a similar pseudo first-order reaction kinetics with k(app) close to 3.2 × 10(-2) min(-1). The maximum mineralization efficiency obtained was 80%. High-pressure liquid chromatography with UV-VIS detection established that both anodes degraded TBH via similar intermediates. Ion chromatography revealed that increasing concentrations of nitrate ions (up to 0.9 ppm) were formed with increasing current density, while the formation of nitrite ions was observed with both anodes at current densities ≥ 150 mA cm(-2). The BDD film prepared at the lower doping level (5000 ppm) was more efficient in degrading TBH than its more highly doped counterpart. This unexpected finding may be explained in terms of the quantity of impurities incorporated into the diamond lattice during chemical vapor deposition.
Chemosphere | 2016
E. Vieira dos Santos; Fernanda de Carvalho Panzeri Pires de Souza; Cristina Sáez; Pablo Cañizares; Marcos R.V. Lanza; Carlos A. Martínez-Huitle; Manuel A. Rodrigo
In this work, four bench-scale plants containing soil spiked with four herbicides (2,4-Dichlorophenoxyacetic acid (2,4-D), oxyfluorfen, chlorsulfuron and atrazine) undergo treatment consisting of an electrokinetic soil flushing (EKSF). Results clearly demonstrate that efficiency of EKSF depends on the chemical characteristic of the pesticide used. The amount of pesticide collected in the anode well is more significant than that collected in the cathode wells, indicating that the electromigration is much more important than drainage by electro-osmotic flux for this application. After 15 d of treatment, the 2,4-D is the pesticide most efficiently removed (95% of removal), while chlorsulfuron is the pesticide more resilient to the treatment. Additionally, volatilization was found to be a process of the major significance in the application of electrokinetic techniques to soil polluted with herbicides and because of that it should always be taken into account in the future design of full-scale processes.
Analytical Methods | 2010
Mariana Calora Quintino de Oliveira; Marcos R.V. Lanza; Auro Atsushi Tanaka; Maria Del Pilar Taboada Sotomayor
This work describes the coupling of a biomimetic sensor to a flow injection system for the sensitive determination of paracetamol. The sensor was prepared as previously described in the literature (M. D. P. T. Sotomayor, A. Sigoli, M. R. V. Lanza, A. A. Tanaka and L. T. Kubota, J. Braz. Chem. Soc., 2008, 19, 734) by modifying a glassy carbon electrode surface with a Nafion® membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz), a biomimetic catalyst of the P450 enzyme. The performance of the sensor for paracetamol detection was investigated and optimized in a flow injection system (FIA) using a wall jet electrochemical cell. Under optimized conditions a wide linear response range (1.0 × 10−5 to 5.0 × 10−2 mol L−1) was obtained, with a sensitivity of 2579 (±129) μA L μmol−1. The detection and quantification limits of the sensor for paracetamol in the FIA system were 1.0 and 3.5 μmol L−1, respectively. The analytical frequency was 51 samples h−1, and over a period of five days (320 determinations) the biosensor maintained practically the same response. The system was successfully applied to paracetamol quantification in seven pharmaceutical formulations and in water samples from six rivers in Sao Paulo State, Brazil.
Química Nova | 2010
Luis Gustavo P. Rezende; Vânia M. do Prado; Robson S. Rocha; André A. G. F. Beati; Maria Del Pilar Taboada Sotomayor; Marcos R.V. Lanza
This paper reports a study of electrochemical degradation of the chloramphenicol antibiotic in aqueous medium using a flow-by reactor with DSA® anode. The process efficiency was monitored by chloramphenicol concentration analysis with liquid chromatography (HPLC) during the experiments. Analysis of Total Organic Carbon (TOC) was performed to estimate the degradation degree and Ion Chromatography (IC) was performed to determinate inorganic ions formed during the eletrochemical degradation process. In electrochemical flow-by reactor, 52% of chloramphenicol was degraded, with 12% TOC reduction. IC analysis showed the production of chloride ions (25 mg L-1), nitrate ions (6 mg L-1) and nitrite ions (4.5 mg L-1).
Journal of Environmental Management | 2015
F.L. Souza; Marcos R.V. Lanza; Javier Llanos; Cristina Sáez; Manuel A. Rodrigo; Pablo Cañizares
In the search for greener treatment technologies, this work studies the coupling of a wind turbine energy supply with an electrolytic cell (CWTEC device) for the remediation of wastewater polluted with pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). The discontinuous and unforeseeable supply of energy is the main challenge inspiring this new proposal, which aims at reducing the environmental impact of electrolytic treatment by using a green energy supply. The results obtained using the coupled technologies are compared with those obtained by powering the electrolyser with a traditional power supply with a similar current intensity. The mineralisation of wastewater can be accomplished independently of how the electrolytic cell is powered, although differences in performance are clearly observed in the total organic carbon (TOC) and 2,4-D decays. These changes can be explained in terms of the changing profile of the current intensity, which influences the concentrations of the oxidants produced and thereby the mediated electrolytic process.
Journal of Advanced Oxidation Technologies | 2013
Fabiana Maria Monteiro Paschoal; Luciana Nuñez; Marcos R.V. Lanza; Maria Valnice Boldrin Zanoni
Abstract The present work describes a suitable method for treatment of water contaminated with nitrate by using a photo-electrochemical method. A Cu/Cu2O electrodeposited electrode is used as photocathode with long-term stability under UV irradiation and applied potential of +0.2 V vs Ag/AgCl. In this condition 93% of nitrate is removed after 75 min of photoelectrolysis conducted in NaCl 0.07 mol L-1 and pH = 7. Nitrate reduction on Cu/Cu2O photoelectrodes occurs in the cathodic compartment cell via electrons generated under UV irradiation, as expected for a p-type electrode leading to 42% of remaining nitrite and 52% gaseous nitrogen derived, respectively.
Journal of the Brazilian Chemical Society | 2010
Ana Carolina Boni; Maria Del Pilar Taboada Sotomayor; Marcos R.V. Lanza; Sônia Maria Carvalho Neiva Tanaka; Auro Atsushi Tanaka
The construction and application of a biomimetic sensor for determination of 4-methylbenzylidene camphor (4-MBC), an ultraviolet (UV) radiation protector, are described. The sensor was prepared by modifying a carbon paste electrode with iron(III) phthalocyanine chloride (FePcCl). Amperometric measurements carried out with the sensor under an applied potential of 0.0 V vs. Ag|AgCl in a mixture of tetrahydrofuran and 0.1 mol L-1 H2SO4 solution (30:70 volume ratio) showed a linear response range from 1.8×10-4 to 9.0×10-4 mol L-1. A detailed selectivity investigation for other nine UV filters was also performed. A sensor response mechanism was proposed and the results for 4-MBC quantification in commercial sunscreens and in water from swimming pools and rivers are presented.