Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcos Rigol is active.

Publication


Featured researches published by Marcos Rigol.


Nature | 2008

Thermalization and its mechanism for generic isolated quantum systems.

Marcos Rigol; Vanja Dunjko; Maxim Olshanii

An understanding of the temporal evolution of isolated many-body quantum systems has long been elusive. Recently, meaningful experimental studies of the problem have become possible, stimulating theoretical interest. In generic isolated systems, non-equilibrium dynamics is expected to result in thermalization: a relaxation to states in which the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable using statistical mechanics. However, it is not obvious what feature of many-body quantum mechanics makes quantum thermalization possible in a sense analogous to that in which dynamical chaos makes classical thermalization possible. For example, dynamical chaos itself cannot occur in an isolated quantum system, in which the time evolution is linear and the spectrum is discrete. Some recent studies even suggest that statistical mechanics may give incorrect predictions for the outcomes of relaxation in such systems. Here we demonstrate that a generic isolated quantum many-body system does relax to a state well described by the standard statistical-mechanical prescription. Moreover, we show that time evolution itself plays a merely auxiliary role in relaxation, and that thermalization instead happens at the level of individual eigenstates, as first proposed by Deutsch and Srednicki. A striking consequence of this eigenstate-thermalization scenario, confirmed for our system, is that knowledge of a single many-body eigenstate is sufficient to compute thermal averages—any eigenstate in the microcanonical energy window will do, because they all give the same result.


Physical Review Letters | 2007

Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons.

Marcos Rigol; Vanja Dunjko; Vladimir A. Yurovsky; Maxim Olshanii

In this Letter we pose the question of whether a many-body quantum system with a full set of conserved quantities can relax to an equilibrium state, and, if it can, what the properties of such a state are. We confirm the relaxation hypothesis through an ab initio numerical investigation of the dynamics of hard-core bosons on a one-dimensional lattice. Further, a natural extension of the Gibbs ensemble to integrable systems results in a theory that is able to predict the mean values of physical observables after relaxation. Finally, we show that our generalized equilibrium carries more memory of the initial conditions than the usual thermodynamic one. This effect may have many experimental consequences, some of which have already been observed in the recent experiment on the nonequilibrium dynamics of one-dimensional hard-core bosons in a harmonic potential [T. Kinoshita et al., Nature (London) 440, 900 (2006)10.1038/nature04693].


Reviews of Modern Physics | 2011

One dimensional bosons: From condensed matter systems to ultracold gases

Miguel A. Cazalilla; R. Citro; Thierry Giamarchi; Edmond Orignac; Marcos Rigol

The physics of one-dimensional interacting bosonic systems is reviewed. Beginning with results from exactly solvable models and computational approaches, the concept of bosonic Tomonaga-Luttinger liquids relevant for one-dimensional Bose fluids is introduced, and compared with Bose-Einstein condensates existing in dimensions higher than one. The effects of various perturbations on the Tomonaga-Luttinger liquid state are discussed as well as extensions to multicomponent and out of equilibrium situations. Finally, the experimental systems that can be described in terms of models of interacting bosons in one dimension are discussed.


Advances in Physics | 2016

From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics

Luca D'Alessio; Yariv Kafri; Anatoli Polkovnikov; Marcos Rigol

This review gives a pedagogical introduction to the eigenstate thermalization hypothesis (ETH), its basis, and its implications to statistical mechanics and thermodynamics. In the first part, ETH is introduced as a natural extension of ideas from quantum chaos and random matrix theory (RMT). To this end, we present a brief overview of classical and quantum chaos, as well as RMT and some of its most important predictions. The latter include the statistics of energy levels, eigenstate components, and matrix elements of observables. Building on these, we introduce the ETH and show that it allows one to describe thermalization in isolated chaotic systems without invoking the notion of an external bath. We examine numerical evidence of eigenstate thermalization from studies of many-body lattice systems. We also introduce the concept of a quench as a means of taking isolated systems out of equilibrium, and discuss results of numerical experiments on quantum quenches. The second part of the review explores the implications of quantum chaos and ETH to thermodynamics. Basic thermodynamic relations are derived, including the second law of thermodynamics, the fundamental thermodynamic relation, fluctuation theorems, the fluctuation–dissipation relation, and the Einstein and Onsager relations. In particular, it is shown that quantum chaos allows one to prove these relations for individual Hamiltonian eigenstates and thus extend them to arbitrary stationary statistical ensembles. In some cases, it is possible to extend their regimes of applicability beyond the standard thermal equilibrium domain. We then show how one can use these relations to obtain nontrivial universal energy distributions in continuously driven systems. At the end of the review, we briefly discuss the relaxation dynamics and description after relaxation of integrable quantum systems, for which ETH is violated. We present results from numerical experiments and analytical studies of quantum quenches at integrability. We introduce the concept of the generalized Gibbs ensemble and discuss its connection with ideas of prethermalization in weakly interacting systems.


Physical Review Letters | 2009

Breakdown of Thermalization in Finite One-Dimensional Systems

Marcos Rigol

We use quantum quenches to study the dynamics and thermalization of hard core bosons in finite one-dimensional lattices. We perform exact diagonalizations and find that, far away from integrability, few-body observables thermalize. We then study the breakdown of thermalization as one approaches an integrable point. This is found to be a smooth process in which the predictions of standard statistical mechanics continuously worsen as the system moves toward integrability. We establish a direct connection between the presence or absence of thermalization and the validity or failure of the eigenstate thermalization hypothesis, respectively.


Physical Review Letters | 2014

Quenching the Anisotropic Heisenberg Chain: Exact Solution and Generalized Gibbs Ensemble Predictions

B. Wouters; J. De Nardis; M. Brockmann; Davide Fioretto; Marcos Rigol; Jean-Sébastien Caux

We study quenches in integrable spin-1/2 chains in which we evolve the ground state of the antiferromagnetic Ising model with the anisotropic Heisenberg Hamiltonian. For this nontrivially interacting situation, an application of the first-principles-based quench-action method allows us to give an exact description of the postquench steady state in the thermodynamic limit. We show that a generalized Gibbs ensemble, implemented using all known local conserved charges, fails to reproduce the exact quench-action steady state and to correctly predict postquench equilibrium expectation values of physical observables. This is supported by numerical linked-cluster calculations within the diagonal ensemble in the thermodynamic limit.


Physical Review Letters | 2002

Mott Domains of Bosons Confined on Optical Lattices

G. G. Batrouni; V. G. Rousseau; R. T. Scalettar; Marcos Rigol; Alejandro Muramatsu; P. J. H. Denteneer; Matthias Troyer

In the absence of a confining potential, the boson-Hubbard model exhibits a superfluid to Mott insulator quantum phase transition at commensurate fillings and strong coupling. We use quantum Monte Carlo simulations to study the ground state of the one-dimensional bosonic Hubbard model in a trap. Some, but not all, aspects of the Mott insulating phase persist. Mott behavior occurs for a continuous range of incommensurate fillings, very different from the unconfined case, and the establishment of the Mott phase does not proceed via a traditional quantum phase transition. These results have important implications for interpreting experiments on ultracold atoms on optical lattices.


Physical Review Letters | 2012

Alternatives to eigenstate thermalization.

Marcos Rigol; Mark Srednicki

An isolated quantum many-body system in an initial pure state will come to thermal equilibrium if it satisfies the eigenstate thermalization hypothesis (ETH). We consider alternatives to ETH that have been proposed. We first show that von Neumanns quantum ergodic theorem relies on an assumption that is essentially equivalent to ETH. We also investigate whether, following a sudden quench, special classes of pure states can lead to thermal behavior in systems that do not obey ETH, namely, integrable systems. We find examples of this, but only for initial states that obeyed ETH before the quench.


Journal of Statistical Mechanics: Theory and Experiment | 2016

Generalized Gibbs ensemble in integrable lattice models

Lev Vidmar; Marcos Rigol

The generalized Gibbs ensemble (GGE) was introduced ten years ago to describe observables in isolated integrable quantum systems after equilibration. Since then, the GGE has been demonstrated to be a powerful tool to predict the outcome of the relaxation dynamics of few-body observables in a variety of integrable models, a process we call generalized thermalization. This review discusses several fundamental aspects of the GGE and generalized thermalization in integrable systems. In particular, we focus on questions such as: which observables equilibrate to the GGE predictions and who should play the role of the bath; what conserved quantities can be used to construct the GGE; what are the differences between generalized thermalization in noninteracting systems and in interacting systems mappable to noninteracting ones; why is it that the GGE works when traditional ensembles of statistical mechanics fail. Despite a lot of interest in these questions in recent years, no definite answers have been given. We review results for the XX model and for the transverse field Ising model. For the latter model, we also report original results and show that the GGE describes spin-spin correlations over the entire system. This makes apparent that there is no need to trace out a part of the system in real space for equilibration to occur and for the GGE to apply. In the past, a spectral decomposition of the weights of various statistical ensembles revealed that generalized eigenstate thermalization occurs in the XX model (hard-core bosons). Namely, eigenstates of the Hamiltonian with similar distributions of conserved quantities have similar expectation values of few-spin observables. Here we show that generalized eigenstate thermalization also occurs in the transverse field Ising model.


Physical Review X | 2014

Long-time Behavior of Isolated Periodically Driven Interacting Lattice Systems

Luca D’Alessio; Marcos Rigol

We study the dynamics of isolated interacting spin chains that are periodically driven by sudden quenches. Using full exact diagonalization of finite chains, we show that these systems exhibit three distinct regimes. For short driving periods, the Floquet Hamiltonian is well approximated by the time-averaged Hamiltonian, while for long periods the evolution operator exhibits properties of random matrices of a Circular Ensemble (CE). In-between, there is a crossover regime. Based on a finite-size scaling analysis and analytic arguments we argue that, for thermodynamically large systems and non-vanishing driving periods, the evolution operator always exhibits properties of CE random matrices. Consequently, the Floquet Hamiltonian is nonlocal and has multi-body interactions; and the driving leads to the equivalent of an infinite temperature state at long times. These results are connected to the breakdown of the Magnus expansion and are expected to hold beyond the specific lattice model considered.

Collaboration


Dive into the Marcos Rigol's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Carrasquilla

Perimeter Institute for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Maxim Olshanii

University of Massachusetts Boston

View shared research outputs
Top Co-Authors

Avatar

Rubem Mondaini

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. G. Rousseau

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge