Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcos Silveira is active.

Publication


Featured researches published by Marcos Silveira.


Science | 2009

Drought sensitivity of the Amazon rainforest

Oliver L. Phillips; Luiz E. O. C. Aragão; Simon L. Lewis; Joshua B. Fisher; Jon Lloyd; Gabriela Lopez-Gonzalez; Yadvinder Malhi; Abel Monteagudo; J. Peacock; Carlos A. Quesada; Geertje M.F. van der Heijden; Samuel Almeida; Iêda Leão do Amaral; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Olaf Banki; Lilian Blanc; Damien Bonal; Paulo M. Brando; Jérôme Chave; Atila Alves de Oliveira; Nallaret Dávila Cardozo; Claudia I. Czimczik; Ted R. Feldpausch; Maria Aparecida Freitas; Emanuel Gloor; Niro Higuchi; Eliana M. Jimenez; Gareth Lloyd

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


New Phytologist | 2010

Drought–mortality relationships for tropical forests

Oliver L. Phillips; Geertje M.F. van der Heijden; Simon L. Lewis; Gabriela Lopez-Gonzalez; Luiz E. O. C. Aragão; Jon Lloyd; Yadvinder Malhi; Abel Monteagudo; Samuel Almeida; Esteban Álvarez Dávila; Iêda Leão do Amaral; Sandy Andelman; Ana Andrade; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Lilian Blanc; Damien Bonal; Atila Alves de Oliveira; Kuo-Jung Chao; Nallaret Dávila Cardozo; Lola Da Costa; Ted R. Feldpausch; Joshua B. Fisher; Nikolaos M. Fyllas; Maria Aparecida Freitas; David Galbraith; Emanuel Gloor; Niro Higuchi; Eurídice N. Honorio

*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.


Nature | 2015

Long-term decline of the Amazon carbon sink

Roel J. W. Brienen; Oliver L. Phillips; Ted R. Feldpausch; Emanuel Gloor; Timothy R. Baker; Jon Lloyd; Gabriela Lopez-Gonzalez; Abel Monteagudo-Mendoza; Yadvinder Malhi; Simon L. Lewis; R. Vásquez Martínez; Miguel Alexiades; E. Álvarez Dávila; Patricia Alvarez-Loayza; Ana Andrade; Luiz E. O. C. Aragão; Alejandro Araujo-Murakami; E.J.M.M. Arets; Luzmila Arroyo; Olaf S. Bánki; Christopher Baraloto; Jorcely Barroso; Damien Bonal; Rene G. A. Boot; José Luís C. Camargo; Carolina V. Castilho; V. Chama; Kuo-Jung Chao; Jérôme Chave; James A. Comiskey

Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.


Global Ecology and Biogeography | 2014

Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

Edward T. A. Mitchard; Ted R. Feldpausch; Roel J. W. Brienen; Gabriela Lopez-Gonzalez; Abel Monteagudo; Timothy R. Baker; Simon L. Lewis; Jon Lloyd; Carlos A. Quesada; Manuel Gloor; Hans ter Steege; Patrick Meir; Esteban Álvarez; Alejandro Araujo-Murakami; Luiz E. O. C. Aragão; Luzmila Arroyo; Gerardo Aymard; Olaf Banki; Damien Bonal; Sandra A. Brown; Foster Brown; Carlos Cerón; Victor Chama Moscoso; Jérôme Chave; James A. Comiskey; Fernando Cornejo; Massiel Corrales Medina; Lola Da Costa; Flávia R. C. Costa; Anthony Di Fiore

Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.


Global Biogeochemical Cycles | 2016

Amazon forest response to repeated droughts

Ted R. Feldpausch; Oliver L. Phillips; Roel J. W. Brienen; Emanuel Gloor; Jon Lloyd; Gabriela Lopez-Gonzalez; Abel Monteagudo-Mendoza; Yadvinder Malhi; A. Alarcón; E. Álvarez Dávila; Patricia Alvarez-Loayza; Ana Andrade; Luiz E. O. C. Aragão; Luzmila Arroyo; Timothy R. Baker; Christopher Baraloto; Jorcely Barroso; Damien Bonal; Wendeson Castro; V. Chama; Jérôme Chave; Tomas F. Domingues; Sophie Fauset; Nikée Groot; E.N. Honorio Coronado; Susan G. Laurance; William F. Laurance; Simon L. Lewis; J. C. Licona; Beatriz Schwantes Marimon

The Amazon Basin has experienced more variable climate over the last decade, with a severe and widespread drought in 2005 causing large basin-wide losses of biomass. A drought of similar climatological magnitude occurred again in 2010; however, there has been no basin-wide ground-based evaluation of effects on vegetation. We examine to what extent the 2010 drought affected forest dynamics using ground-based observations of mortality and growth from an extensive forest plot network. We find that during the 2010 drought interval, forests did not gain biomass (net change: −0.43 Mg ha−1, confidence interval (CI): −1.11, 0.19, n = 97), regardless of whether forests experienced precipitation deficit anomalies. This contrasted with a long-term biomass sink during the baseline pre-2010 drought period (1998 to pre-2010) of 1.33 Mg ha−1 yr−1 (CI: 0.90, 1.74, p < 0.01). The resulting net impact of the 2010 drought (i.e., reversal of the baseline net sink) was −1.95 Mg ha−1 yr−1 (CI:−2.77, −1.18; p < 0.001). This net biomass impact was driven by an increase in biomass mortality (1.45 Mg ha−1 yr−1 CI: 0.66, 2.25, p < 0.001) and a decline in biomass productivity (−0.50 Mg ha−1 yr−1, CI:−0.78, −0.31; p < 0.001). Surprisingly, the magnitude of the losses through tree mortality was unrelated to estimated local precipitation anomalies and was independent of estimated local pre-2010 drought history. Thus, there was no evidence that pre-2010 droughts compounded the effects of the 2010 drought. We detected a systematic basin-wide impact of the 2010 drought on tree growth rates across Amazonia, which was related to the strength of the moisture deficit. This impact differed from the drought event in 2005 which did not affect productivity. Based on these ground data, live biomass in trees and corresponding estimates of live biomass in lianas and roots, we estimate that intact forests in Amazonia were carbon neutral in 2010 (−0.07 Pg C yr−1 CI:−0.42, 0.23), consistent with results from an independent analysis of airborne estimates of land-atmospheric fluxes during 2010. Relative to the long-term mean, the 2010 drought resulted in a reduction in biomass carbon uptake of 1.1 Pg C, compared to 1.6 Pg C for the 2005 event.


Global Change Biology | 2016

Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models

Michelle O. Johnson; David Galbraith; Manuel Gloor; Hannes De Deurwaerder; Matthieu Guimberteau; Anja Rammig; Kirsten Thonicke; Hans Verbeeck; Celso von Randow; Abel Monteagudo; Oliver L. Phillips; Roel J. W. Brienen; Ted R. Feldpausch; Gabriela Lopez Gonzalez; Sophie Fauset; Carlos A. Quesada; Bradley Christoffersen; Philippe Ciais; Gilvan Sampaio; Bart Kruijt; Patrick Meir; Paul R. Moorcroft; Ke Zhang; Esteban Álvarez-Dávila; Atila Alves de Oliveira; Iêda Leão do Amaral; Ana Andrade; Luiz E. O. C. Aragão; Alejandro Araujo-Murakami; E.J.M.M. Arets

Abstract Understanding the processes that determine above‐ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin‐wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.


Ecology Letters | 2014

Fast demographic traits promote high diversification rates of Amazonian trees

Timothy R. Baker; R. Toby Pennington; Susana Magallón; Emanuel Gloor; William F. Laurance; Miguel Alexiades; Esteban Álvarez; Alejandro Araujo; E.J.M.M. Arets; Gerardo Aymard; Atila Alves de Oliveira; Iêda Leão do Amaral; Luzmila Arroyo; Damien Bonal; Roel J. W. Brienen; Jérôme Chave; Kyle G. Dexter; Anthony Di Fiore; Eduardo Eler; Ted R. Feldpausch; Leandro V. Ferreira; Gabriela Lopez-Gonzalez; Geertje M.F. van der Heijden; Niro Higuchi; Eurídice N. Honorio; Isau Huamantupa; Timothy J. Killeen; Susan G. Laurance; Claudio Leaño; Simon L. Lewis

The Amazon rain forest sustains the worlds highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits – short turnover times – are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests.


Plant Ecology & Diversity | 2014

Soil physical conditions limit palm and tree basal area in Amazonian forests

Thaise Emilio; Carlos A. Quesada; Flávia R. C. Costa; Abel Monteagudo; A. M. Araujo; A. Pena-Cruz; A. Torres Lezama; Carolina V. Castilho; David A. Neill; E.M. Oblitas Mendoza; Esteban Álvarez; Eurídice N. Honorio; G.A. Parada; H. ter Steege; Hirma Ramírez-Angulo; Jérôme Chave; John Terborgh; Juliana Schietti; Marcos Silveira; María Cristina Peñuela-Mora; Michael Schwarz; Olaf S. Bánki; O.L. Philips; R. Thomas; R. Vasquez; Roel J. W. Brienen; Ted R. Feldpausch; Timothy J. Killeen; Timothy R. Baker; William E. Magnusson

Background: Trees and arborescent palms adopt different rooting strategies and responses to physical limitations imposed by soil structure, depth and anoxia. However, the implications of these differences for understanding variation in the relative abundance of these groups have not been explored. Aims: We analysed the relationship between soil physical constraints and tree and palm basal area to understand how the physical properties of soil are directly or indirectly related to the structure and physiognomy of lowland Amazonian forests. Methods: We analysed inventory data from 74 forest plots across Amazonia, from the RAINFOR and PPBio networks for which basal area, stand turnover rates and soil data were available. We related patterns of basal area to environmental variables in ordinary least squares and quantile regression models. Results: Soil physical properties predicted the upper limit for basal area of both trees and palms. This relationship was direct for palms but mediated by forest turnover rates for trees. Soil physical constraints alone explained up to 24% of palm basal area and, together with rainfall, up to 18% of tree basal area. Tree basal area was greatest in forests with lower turnover rates on well-structured soils, while palm basal area was high in weakly structured soils. Conclusions: Our results show that palms and trees are associated with different soil physical conditions. We suggest that adaptations of these life-forms drive their responses to soil structure, and thus shape the overall forest physiognomy of Amazonian forest vegetation.


Plant Ecology & Diversity | 2014

Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil 15N:14N measurements

G. B. Nardoto; Carlos A. Quesada; S. Patiño; Gustavo Saiz; Timothy R. Baker; Michael Schwarz; Franziska Schrodt; Ted R. Feldpausch; Tomas F. Domingues; Beatriz Schwantes Marimon; Ben-Hur Marimon Junior; Ima Célia Guimarães Vieira; Marcos Silveira; Michael I. Bird; Oliver L. Phillips; Jon Lloyd; Luiz A. Martinelli

Background: Patterns in tropical forest nitrogen cycling are poorly understood. In particular, the extent to which leguminous trees in these forests fix nitrogen is unclear. Aims: We aimed to determine factors that explain variation in foliar δ15N (δ15NF) for Amazon forest trees, and to evaluate the extent to which putatively N2-fixing Fabaceae acquire nitrogen from the atmosphere. Methods: Upper-canopy δ15NF values were determined for 1255 trees sampled across 65 Amazon forest plots. Along with plot inventory data, differences in δ15NF between nodule-forming Fabaceae and other trees were used to estimate the extent of N2 fixation. Results: δ15NF ranged from −12.1‰ to +9.3‰. Most of this variation was attributable to site-specific conditions, with extractable soil phosphorus and dry-season precipitation having strong influences, suggesting a restricted availability of nitrogen on both young and old soils and/or at low precipitation. Fabaceae constituted fewer than 10% of the sampled trees, and only 36% were expressed fixers. We estimated an average Amazon forest symbiotic fixation rate of 3 kg N ha−1 year−1. Conclusion: Plant δ15N indicate that low levels of nitrogen availability are only likely to influence Amazon forest function on immature or old weathered soils and/or where dry-season precipitation is low. Most Fabaceae species that are capable of nodulating do not fix nitrogen in Amazonia.


Ecography | 2017

Seasonal drought limits tree species across the Neotropics

Adriane Esquivel-Muelbert; Timothy R. Baker; Kyle G. Dexter; Simon L. Lewis; Hans ter Steege; Gabriela Lopez-Gonzalez; Abel Monteagudo Mendoza; Roel J. W. Brienen; Ted R. Feldpausch; Nigel C. A. Pitman; Alfonso Alonso; Geertje M.F. van der Heijden; Marielos Peña-Claros; Manuel Ahuite; Miguel Alexiaides; Esteban Álvarez Dávila; Alejandro Araujo Murakami; Luzmila Arroyo; Milton Aulestia; Henrik Balslev; Jorcely Barroso; Rene G. A. Boot; Ángela Cano; Victor Chama Moscoso; James A. Comiskey; Fernando Cornejo; Francisco Dallmeier; Douglas C. Daly; Nállarett Dávila; Joost F. Duivenvoorden

Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This process implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions it predicts a nested pattern of taxa distribution from wet to dry areas. However, this ‘dry-tolerance’ hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the Western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the ‘dry tolerance’ hypothesis has broad applicability in the worlds most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region.

Collaboration


Dive into the Marcos Silveira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jérôme Chave

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Andrade

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Christopher Baraloto

Florida International University

View shared research outputs
Researchain Logo
Decentralizing Knowledge