Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcos V. G. B. da Silva is active.

Publication


Featured researches published by Marcos V. G. B. da Silva.


BMC Genetics | 2013

Genome-wide association study for birth weight in Nellore cattle points to previously described orthologous genes affecting human and bovine height

Yuri T. Utsunomiya; Adriana Santana do Carmo; Roberto Carvalheiro; Haroldo H. R. Neves; Márcia C. Matos; Ludmilla B. Zavarez; Ana M Pérez O’Brien; Johann Sölkner; J. C. McEwan; J.B. Cole; Curtis P. Van Tassell; F.S. Schenkel; Marcos V. G. B. da Silva; Laercio R. Porto Neto; Tad S. Sonstegard; José Fernando Garcia

BackgroundBirth weight (BW) is an economically important trait in beef cattle, and is associated with growth- and stature-related traits and calving difficulty. One region of the cattle genome, located on Bos primigenius taurus chromosome 14 (BTA14), has been previously shown to be associated with stature by multiple independent studies, and contains orthologous genes affecting human height. A genome-wide association study (GWAS) for BW in Brazilian Nellore cattle (Bos primigenius indicus) was performed using estimated breeding values (EBVs) of 654 progeny-tested bulls genotyped for over 777,000 single nucleotide polymorphisms (SNPs).ResultsThe most significant SNP (rs133012258, PGC = 1.34 × 10-9), located at BTA14:25376827, explained 4.62% of the variance in BW EBVs. The surrounding 1 Mb region presented high identity with human, pig and mouse autosomes 8, 4 and 4, respectively, and contains the orthologous height genes PLAG1, CHCHD7, MOS, RPS20, LYN, RDHE2 (SDR16C5) and PENK. The region also overlapped 28 quantitative trait loci (QTLs) previously reported in literature by linkage mapping studies in cattle, including QTLs for birth weight, mature height, carcass weight, stature, pre-weaning average daily gain, calving ease, and gestation length.ConclusionsThis study presents the first GWAS applying a high-density SNP panel to identify putative chromosome regions affecting birth weight in Nellore cattle. These results suggest that the QTLs on BTA14 associated with body size in taurine cattle (Bos primigenius taurus) also affect birth weight and size in zebu cattle (Bos primigenius indicus).


BMC Genomics | 2013

Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping

Laercio R. Porto-Neto; Tad S. Sonstegard; George E. Liu; Derek M. Bickhart; Marcos V. G. B. da Silva; Marco Antonio Machado; Yuri T. Utsunomiya; José Fernando Garcia; Cedric Gondro; Curtis P. Van Tassell

BackgroundNatural selection has molded evolution across all taxa. At an arguable date of around 330,000 years ago there were already at least two different types of cattle that became ancestors of nearly all modern cattle, the Bos taurus taurus more adapted to temperate climates and the tropically adapted Bos taurus indicus. After domestication, human selection exponentially intensified these differences. To better understand the genetic differences between these subspecies and detect genomic regions potentially under divergent selection, animals from the International Bovine HapMap Experiment were genotyped for over 770,000 SNP across the genome and compared using smoothed FST. The taurine sample was represented by ten breeds and the contrasting zebu cohort by three breeds.ResultsEach cattle group evidenced similar numbers of polymorphic markers well distributed across the genome. Principal components analyses and unsupervised clustering confirmed the well-characterized main division of domestic cattle. The top 1% smoothed FST, potentially associated to positive selection, contained 48 genomic regions across 17 chromosomes. Nearly half of the top FST signals (n = 22) were previously detected using a lower density SNP assay. Amongst the strongest signals were the BTA7:~50 Mb and BTA14:~25 Mb; both regions harboring candidate genes and different patterns of linkage disequilibrium that potentially represent intrinsic differences between cattle types. The bottom 1% of the smoothed FST values, potentially associated to balancing selection, included 24 regions across 13 chromosomes. These regions often overlap with copy number variants, including the highly variable region at BTA23:~24 Mb that harbors a large number of MHC genes. Under these regions, 318 unique Ensembl genes are annotated with a significant overrepresentation of immune related pathways.ConclusionsGenomic regions that are potentially linked to purifying or balancing selection processes in domestic cattle were identified. These regions are of particular interest to understand the natural and human selective pressures to which these subspecies were exposed to and how the genetic background of these populations evolved in response to environmental challenges and human manipulation.


PLOS ONE | 2014

Genome-Wide Association for Growth Traits in Canchim Beef Cattle

Marcos Eli Buzanskas; Daniela do Amaral Grossi; Ricardo Vieira Ventura; F.S. Schenkel; Mehdi Sargolzaei; Sarah Laguna Meirelles; Fabiana Barichello Mokry; Roberto H. Higa; Maurício de Alvarenga Mudadu; Marcos V. G. B. da Silva; Simone Cristina Méo Niciura; Roberto Augusto de Almeida Torres Júnior; Maurício Mello de Alencar; Luciana Correia de Almeida Regitano; Danísio Prado Munari

Studies are being conducted on the applicability of genomic data to improve the accuracy of the selection process in livestock, and genome-wide association studies (GWAS) provide valuable information to enhance the understanding on the genetics of complex traits. The aim of this study was to identify genomic regions and genes that play roles in birth weight (BW), weaning weight adjusted for 210 days of age (WW), and long-yearling weight adjusted for 420 days of age (LYW) in Canchim cattle. GWAS were performed by means of the Generalized Quasi-Likelihood Score (GQLS) method using genotypes from the BovineHD BeadChip and estimated breeding values for BW, WW, and LYW. Data consisted of 285 animals from the Canchim breed and 114 from the MA genetic group (derived from crossings between Charolais sires and ½ Canchim + ½ Zebu dams). After applying a false discovery rate correction at a 10% significance level, a total of 4, 12, and 10 SNPs were significantly associated with BW, WW, and LYW, respectively. These SNPs were surveyed to their corresponding genes or to surrounding genes within a distance of 250 kb. The genes DPP6 (dipeptidyl-peptidase 6) and CLEC3B (C-type lectin domain family 3 member B) were highlighted, considering its functions on the development of the brain and skeletal system, respectively. The GQLS method identified regions on chromosome associated with birth weight, weaning weight, and long-yearling weight in Canchim and MA animals. New candidate regions for body weight traits were detected and some of them have interesting biological functions, of which most have not been previously reported. The observation of QTL reports for body weight traits, covering areas surrounding the genes (SNPs) herein identified provides more evidence for these associations. Future studies targeting these areas could provide further knowledge to uncover the genetic architecture underlying growth traits in Canchim cattle.


Genetics Selection Evolution | 2014

Accuracy of genomic predictions in Bos indicus (Nellore) cattle

Haroldo H. R. Neves; Roberto Carvalheiro; Ana M Pérez O’Brien; Yuri T. Utsunomiya; Adriana Santana do Carmo; F.S. Schenkel; Johann Sölkner; J. C. McEwan; Curtis P. Van Tassell; J.B. Cole; Marcos V. G. B. da Silva; Sandra Aidar de Queiroz; Tad S. Sonstegard; José Fernando Garcia

BackgroundNellore cattle play an important role in beef production in tropical systems and there is great interest in determining if genomic selection can contribute to accelerate genetic improvement of production and fertility in this breed. We present the first results of the implementation of genomic prediction in a Bos indicus (Nellore) population.MethodsInfluential bulls were genotyped with the Illumina Bovine HD chip in order to assess genomic predictive ability for weight and carcass traits, gestation length, scrotal circumference and two selection indices. 685 samples and 320 238 single nucleotide polymorphisms (SNPs) were used in the analyses. A forward-prediction scheme was adopted to predict the genomic breeding values (DGV). In the training step, the estimated breeding values (EBV) of bulls were deregressed (dEBV) and used as pseudo-phenotypes to estimate marker effects using four methods: genomic BLUP with or without a residual polygenic effect (GBLUP20 and GBLUP0, respectively), a mixture model (Bayes C) and Bayesian LASSO (BLASSO). Empirical accuracies of the resulting genomic predictions were assessed based on the correlation between DGV and dEBV for the testing group.ResultsAccuracies of genomic predictions ranged from 0.17 (navel at weaning) to 0.74 (finishing precocity). Across traits, Bayesian regression models (Bayes C and BLASSO) were more accurate than GBLUP. The average empirical accuracies were 0.39 (GBLUP0), 0.40 (GBLUP20) and 0.44 (Bayes C and BLASSO). Bayes C and BLASSO tended to produce deflated predictions (i.e. slope of the regression of dEBV on DGV greater than 1). Further analyses suggested that higher-than-expected accuracies were observed for traits for which EBV means differed significantly between two breeding subgroups that were identified in a principal component analysis based on genomic relationships.ConclusionsBayesian regression models are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions. Recurrent updates of the training population would be required to enable accurate prediction of the genetic merit of young animals. The technical feasibility of applying genomic prediction in a Bos indicus (Nellore) population was demonstrated. Further research is needed to permit cost-effective selection decisions using genomic information.


Frontiers in Genetics | 2015

Assessment of autozygosity in Nellore cows (Bos indicus) through high-density SNP genotypes.

Ludmilla B. Zavarez; Yuri T. Utsunomiya; Adriana Santana do Carmo; Haroldo H. R. Neves; Roberto Carvalheiro; Maja Ferenčaković; Ana M. Pérez O'Brien; Ino Curik; J.B. Cole; Curtis P. Van Tassell; Marcos V. G. B. da Silva; Tad S. Sonstegard; Johann Sölkner; José Fernando Garcia

The use of relatively low numbers of sires in cattle breeding programs, particularly on those for carcass and weight traits in Nellore beef cattle (Bos indicus) in Brazil, has always raised concerns about inbreeding, which affects conservation of genetic resources and sustainability of this breed. Here, we investigated the distribution of autozygosity levels based on runs of homozygosity (ROH) in a sample of 1,278 Nellore cows, genotyped for over 777,000 SNPs. We found ROH segments larger than 10 Mb in over 70% of the samples, representing signatures most likely related to the recent massive use of few sires. However, the average genome coverage by ROH (>1 Mb) was lower than previously reported for other cattle breeds (4.58%). In spite of 99.98% of the SNPs being included within a ROH in at least one individual, only 19.37% of the markers were encompassed by common ROH, suggesting that the ongoing selection for weight, carcass and reproductive traits in this population is too recent to have produced selection signatures in the form of ROH. Three short-range highly prevalent ROH autosomal hotspots (occurring in over 50% of the samples) were observed, indicating candidate regions most likely under selection since before the foundation of Brazilian Nellore cattle. The putative signatures of selection on chromosomes 4, 7, and 12 may be involved in resistance to infectious diseases and fertility, and should be subject of future investigation.


Frontiers in Genetics | 2015

Genomic analysis for managing small and endangered populations: a case study in Tyrol Grey cattle

Gábor Mészáros; Solomon A. Boison; Ana M. Pérez O'Brien; Maja Ferenčaković; Ino Curik; Marcos V. G. B. da Silva; Yuri T. Utsunomiya; José Fernando Garcia; Johann Sölkner

Analysis of genomic data is increasingly becoming part of the livestock industry. Therefore, the routine collection of genomic information would be an invaluable resource for effective management of breeding programs in small, endangered populations. The objective of the paper was to demonstrate how genomic data could be used to analyse (1) linkage disequlibrium (LD), LD decay and the effective population size (NeLD); (2) Inbreeding level and effective population size (NeROH) based on runs of homozygosity (ROH); (3) Prediction of genomic breeding values (GEBV) using small within-breed and genomic information from other breeds. The Tyrol Grey population was used as an example, with the goal to highlight the potential of genomic analyses for small breeds. In addition to our own results we discuss additional use of genomics to assess relatedness, admixture proportions, and inheritance of harmful variants. The example data set consisted of 218 Tyrol Grey bull genotypes, which were all available AI bulls in the population. After standard quality control restrictions 34,581 SNPs remained for the analysis. A separate quality control was applied to determine ROH levels based on Illumina GenCall and Illumina GenTrain scores, resulting into 211 bulls and 33,604 SNPs. LD was computed as the squared correlation coefficient between SNPs within a 10 mega base pair (Mb) region. ROHs were derived based on regions covering at least 4, 8, and 16 Mb, suggesting that animals had common ancestors approximately 12, 6, and 3 generations ago, respectively. The corresponding mean inbreeding coefficients (FROH) were 4.0% for 4 Mb, 2.9% for 8 Mb and 1.6% for 16 Mb runs. With an average generation interval of 5.66 years, estimated NeROH was 125 (NeROH>16 Mb), 186 (NeROH>8 Mb) and 370 (NeROH>4 Mb) indicating strict avoidance of close inbreeding in the population. The LD was used as an alternative method to infer the population history and the Ne. The results show a continuous decrease in NeLD, to 780, 120, and 80 for 100, 10, and 5 generations ago, respectively. Genomic selection was developed for and is working well in large breeds. The same methodology was applied in Tyrol Grey cattle, using different reference populations. Contrary to the expectations, the accuracy of GEBVs with very small within breed reference populations were very high, between 0.13–0.91 and 0.12–0.63, when estimated breeding values and deregressed breeding values were used as pseudo-phenotypes, respectively. Subsequent analyses confirmed the high accuracies being a consequence of low reliabilities of pseudo-phenotypes in the validation set, thus being heavily influenced by parent averages. Multi-breed and across breed reference sets gave inconsistent and lower accuracies. Genomic information may have a crucial role in management of small breeds, even if its primary usage differs from that of large breeds. It allows to assess relatedness between individuals, trends in inbreeding and to take decisions accordingly. These decisions would be based on the real genome architecture, rather than conventional pedigree information, which can be missing or incomplete. We strongly suggest the routine genotyping of all individuals that belong to a small breed in order to facilitate the effective management of endangered livestock populations.


PLOS ONE | 2015

Genome-Wide Scan of Gastrointestinal Nematode Resistance in Closed Angus Population Selected for Minimized Influence of MHC

Eui-Soo Kim; Tad S. Sonstegard; Marcos V. G. B. da Silva; Louis C. Gasbarre; Curtis P. Van Tassell

Genetic markers associated with parasite indicator traits are ideal targets for study of marker assisted selection aimed at controlling infections that reduce herd use of anthelminthics. For this study, we collected gastrointestinal (GI) nematode fecal egg count (FEC) data from post-weaning animals of an Angus resource population challenged to a 26 week natural exposure on pasture. In all, data from 487 animals was collected over a 16 year period between 1992 and 2007, most of which were selected for a specific DRB1 allele to reduce the influence of potential allelic variant effects of the MHC locus. A genome-wide association study (GWAS) based on BovineSNP50 genotypes revealed six genomic regions located on bovine Chromosomes 3, 5, 8, 15 and 27; which were significantly associated (-log10 p=4.3) with Box-Cox transformed mean FEC (BC-MFEC). DAVID analysis of the genes within the significant genomic regions suggested a correlation between our results and annotation for genes involved in inflammatory response to infection. Furthermore, ROH and selection signature analyses provided strong evidence that the genomic regions associated BC-MFEC have not been affected by local autozygosity or recent experimental selection. These findings provide useful information for parasite resistance prediction for young grazing cattle and suggest new candidate gene targets for development of disease-modifying therapies or future studies of host response to GI parasite infection.


PLOS ONE | 2018

TNF-α blockade impairs in vitro tuberculous granuloma formation and down modulate Th1, Th17 and Treg cytokines

Djalma Alexandre Alves Silva; Marcos V. G. B. da Silva; Cleyson C. Oliveira Barros; Patricia B. D. Alexandre; Rodolfo Timoteo; Jonatas Da Silva Catarino; Helioswilton Sales-Campos; Juliana Reis Machado; Denise Bertulucci Rocha Rodrigues; Carlo José Freire Oliveira; Virmondes Rodrigues

Tuberculosis (TB) is a granulomatous disease that has affected humanity for thousands of years. The production of cytokines, such as IFN-γ and TNF-α, is fundamental in the formation and maintenance of granulomas and in the control of the disease. Recently, the introduction of TNF-α-blocking monoclonal antibodies, such as Infliximab, has brought improvements in the treatment of patients with chronic inflammatory diseases, but this treatment also increases the risk of reactivation of latent tuberculosis. Our objective was to analyze, in an in vitro model, the influence of Infliximab on the granulomatous reactions and on the production of antigen-specific cytokines (TNF-α, IFN-γ, IL-12p40, IL-10 and IL-17) from beads sensitized with soluble Bacillus Calmette-Guérin (BCG) antigens cultured in the presence of peripheral blood mononuclear cells (PBMC) from TB patients. We evaluated 76 individuals, with tuberculosis active, treated and subjects with positive PPD. Granuloma formation was induced in the presence or absence of Infliximab for up to 10 days. The use of Infliximab in cultures significantly blocked TNF-α production (p <0.05), and led to significant changes in granuloma structure, in vitro, only in the treated TB group. On the other hand, there was a significant reduction in the levels of IFN-γ, IL-12p40, IL-10 and IL-17 after TNF-α blockade in the three experimental groups (p <0.05). Taken together, our results demonstrate that TNF-α blockade by Infliximab directly influenced the structure of granuloma only in the treated TB group, but negatively modulated the production of Th1, Th17 and regulatory T cytokines in the three groups analyzed.


PLOS Neglected Tropical Diseases | 2018

An insight into the salivary gland and fat body transcriptome of Panstrongylus lignarius (Hemiptera: Heteroptera), the main vector of Chagas disease in Peru

Jessica C. Nevoa; Maria Tays Mendes; Marcos V. G. B. da Silva; Siomar de Castro Soares; Carlo José Freire Oliveira; José M. C. Ribeiro

Triatomines are hematophagous arthropod vectors of Trypanosoma cruzi, the causative agent of Chagas Disease. Panstrongylus lignarius, also known as Panstrongylus herreri, is considered one of the most versatile triatomines because it can parasitize different hosts, it is found in different habitats and countries, it has sylvatic, peridomestic and domestic behavior and it is a very important vector of Chagas disease, especially in Peru. Molecules produced and secreted by salivary glands and fat body are considered of important adaptational value for triatomines because, among other functions, they subvert the host haemostatic, inflammatory and immune systems and detoxify or protect them against environmental aggressors. In this context, the elucidation of the molecules produced by these tissues is highly valuable to understanding the ability of this species to adapt and transmit pathogens. Here, we use high-throughput sequencing techniques to assemble and describe the coding sequences resulting from the transcriptome of the fat body and salivary glands of P. lignarius. The final assembly of both transcriptomes together resulted in a total of 11,507 coding sequences (CDS), which were mapped from a total of 164,676,091 reads. The CDS were subdivided according to their 10 folds overexpression on salivary glands (513 CDS) or fat body (2073 CDS). Among the families of proteins found in the salivary glands, lipocalins were the most abundant. Other ubiquitous families of proteins present in other sialomes were also present in P. lignarius, including serine protease inhibitors, apyrase and antigen-5. The unique transcriptome of fat body showed proteins related to the metabolic function of this organ. Remarkably, nearly 20% of all reads mapped to transcripts coded by Triatoma virus. The data presented in this study improve the understanding on triatomines’ salivary glands and fat body function and reveal important molecules used in the interplay between vectors and vertebrate hosts.


Livestock Science | 2014

Linkage disequilibrium levels in Bos indicus and Bos taurus cattle using medium and high density SNP chip data and different minor allele frequency distributions

Ana M Pérez O’Brien; Gábor Mészáros; Yuri T. Utsunomiya; Tad S. Sonstegard; J. Fernando Garcia; Curtis P. Van Tassell; Roberto Carvalheiro; Marcos V. G. B. da Silva; Johann Sölkner

Collaboration


Dive into the Marcos V. G. B. da Silva's collaboration.

Top Co-Authors

Avatar

Curtis P. Van Tassell

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Tad S. Sonstegard

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

J.B. Cole

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juliana Reis Machado

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek M. Bickhart

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge