Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcos Vidal is active.

Publication


Featured researches published by Marcos Vidal.


Cell Stem Cell | 2013

ROS Production and NF-κB Activation Triggered by RAC1 Facilitate WNT-Driven Intestinal Stem Cell Proliferation and Colorectal Cancer Initiation

Kevin Myant; Patrizia Cammareri; Ewan J. McGhee; Rachel A. Ridgway; David J. Huels; Julia B. Cordero; Sarah Schwitalla; Gabriela Kalna; Erinn-Lee Ogg; Dimitris Athineos; Paul Timpson; Marcos Vidal; Graeme I. Murray; Florian R. Greten; Kurt I. Anderson; Owen J. Sansom

Summary The Adenomatous Polyposis Coli (APC) gene is mutated in the majority of colorectal cancers (CRCs). Loss of APC leads to constitutively active WNT signaling, hyperproliferation, and tumorigenesis. Identification of pathways that facilitate tumorigenesis after APC loss is important for therapeutic development. Here, we show that RAC1 is a critical mediator of tumorigenesis after APC loss. We find that RAC1 is required for expansion of the LGR5 intestinal stem cell (ISC) signature, progenitor hyperproliferation, and transformation. Mechanistically, RAC1-driven ROS and NF-κB signaling mediate these processes. Together, these data highlight that ROS production and NF-κB activation triggered by RAC1 are critical events in CRC initiation.


Developmental Cell | 2010

Oncogenic Ras Diverts a Host TNF Tumor Suppressor Activity into Tumor Promoter

Julia B. Cordero; Juan Pablo Macagno; Rhoda Stefanatos; Karen Strathdee; Ross L. Cagan; Marcos Vidal

The roles of inflammatory cytokines and the immune response in cancer remain paradoxical. In the case of tumor necrosis factor (TNF), there is undisputed evidence indicating both protumor and antitumor activities. Recent work in Drosophila indicated that a TNF-dependent mechanism eliminates cells deficient for the polarity tumor suppressors dlg or scrib. In this study, however, we show that in tumors deficient for scrib that also expressed the Ras oncoprotein, the TNF signal was diverted into a protumor signal that enhanced tumor growth through larval arrest and stimulated invasive migration. In this case, TNF promoted malignancy and was detrimental to host survival. TNF was expressed at high levels by tumor-associated hemocytes recruited from the circulation. The expression of TNF by hemocytes was both necessary and sufficient to trigger TNF signaling in tumor cells. Our evidence suggests that tumors can evolve into malignancy through oncogenic Ras activation and the hijacking of TNF signaling.


Molecular and Cellular Biology | 2002

Stat1-Vitamin D Receptor Interactions Antagonize 1,25-Dihydroxyvitamin D Transcriptional Activity and Enhance Stat1-Mediated Transcription

Marcos Vidal; Chilakamarti V. Ramana; Adriana Dusso

ABSTRACT The cytokine gamma interferon (IFN-γ) and the calcitropic steroid hormone 1,25-dihydroxyvitamin D (1,25D) are activators of macrophage immune function. In sarcoidosis, tuberculosis, and several granulomatoses, IFN-γ induces 1,25D synthesis by macrophages and inhibits 1,25D induction of 24-hydroxylase, a key enzyme in 1,25D inactivation, causing high levels of 1,25D in serum and hypercalcemia. This study delineates IFN-γ-1,25D cross talk in human monocytes-macrophages. Nuclear accumulation of Stat1 and vitamin D receptor (VDR) by IFN-γ and 1,25D promotes protein-protein interactions between Stat1 and the DNA binding domain of the VDR. This prevents VDR-retinoid X receptor (RXR) binding to the vitamin D-responsive element, thus diverting the VDR from its normal genomic target on the 24-hydroxylase promoter and antagonizing 1,25D-VDR transactivation of this gene. In contrast, 1,25D enhances IFN-γ action. Stat1-VDR interactions, by preventing Stat1 deactivation by tyrosine dephosphorylation, cooperate with IFN-γ/Stat1-induced transcription. This novel 1,25D-IFN-γ cross talk explains the pathogenesis of abnormal 1,25D homeostasis in granulomatous processes and provides new insights into 1,25D immunomodulatory properties.


Nature Cell Biology | 2012

Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling

Emma Sandilands; Bryan Serrels; David G. McEwan; Jennifer P. Morton; Juan Pablo Macagno; Kenneth McLeod; Craig Stevens; Valerie G. Brunton; Wallace Y. Langdon; Marcos Vidal; Owen J. Sansom; Ivan Dikic; Simon Wilkinson; Margaret C. Frame

Here we describe a mechanism that cancer cells use to survive when flux through the Src/FAK pathway is severely perturbed. Depletion of FAK, detachment of FAK-proficient cells or expression of non-phosphorylatable FAK proteins causes sequestration of active Src away from focal adhesions into intracellular puncta that co-stain with several autophagy regulators. Inhibition of autophagy results in restoration of active Src at peripheral adhesions, and this leads to cancer cell death. Autophagic targeting of active Src is associated with a Src–LC3B complex, and is mediated by c-Cbl. However, this is independent of c-Cbl E3 ligase activity, but is mediated by an LC3-interacting region. Thus, c-Cbl-mediated autophagic targeting of active Src can occur in cancer cells to maintain viability when flux through the integrin/Src/FAK pathway is disrupted. This exposes a previously unrecognized cancer cell vulnerability that may provide a new therapeutic opportunity.


Nature | 2015

mTORC1 mediated translational elongation limits intestinal tumour initiation and growth

William J. Faller; Thomas J. Jackson; John R. P. Knight; Rachel A. Ridgway; Thomas Jamieson; Saadia A. Karim; Carolyn Jones; Sorina Radulescu; David J. Huels; Kevin Myant; Kate Dudek; Helen A. Casey; Alessandro Scopelliti; Julia B. Cordero; Marcos Vidal; Mario Pende; Alexey G. Ryazanov; Nahum Sonenberg; Oded Meyuhas; Michael N. Hall; Martin Bushell; Anne E. Willis; Owen J. Sansom

Inactivation of APC is a strongly predisposing event in the development of colorectal cancer, prompting the search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth, and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP1 (refs 6, 7). This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP1 (ref. 8), would be ineffective in limiting cancer progression in APC-deficient lesions. Here we show in mice that mTOR complex 1 (mTORC1) activity is absolutely required for the proliferation of Apc-deficient (but not wild-type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC-deficient cells show the expected increases in protein synthesis, our study reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1-mediated inhibition of eEF2 kinase is required for the proliferation of APC-deficient cells. Importantly, treatment of established APC-deficient adenomas with rapamycin (which can target eEF2 through the mTORC1–S6K–eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together, our data suggest that inhibition of translation elongation using existing, clinically approved drugs, such as the rapalogs, would provide clear therapeutic benefit for patients at high risk of developing colorectal cancer.


Cancer Research | 2005

ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma.

Marcos Vidal; Samuel A. Wells; Anderson J. Ryan; Ross L. Cagan

Patients with hereditary medullary thyroid carcinoma (MTC) associated with multiple endocrine neoplasia (MEN) types 2A and 2B and familial MTC (FMTC) have mutations in the RET proto-oncogene. Approximately 40 percent of patients with papillary thyroid carcinoma (PTC) typically have either intrachromosomal or extrachromosomal rearrangements that join the promoter and NH(2)-terminal domains of unrelated genes to the COOH-terminal fragment of RET. The RET point mutations associated with MEN2A, MEN2B, or FMTC, or the chromosomal breakpoints and translocations associated with PTC, typically activate the RET receptor tyrosine kinase (RTK). RET kinase inhibitors are likely to be beneficial for patients with hereditary MTC, where currently there is no effective chemotherapy or radiation therapy. Recently, the low molecular weight tyrosine kinase inhibitor ZD6474 was found to block the enzymatic activity of RET-derived oncoproteins in cultured cell lines. We have developed a Drosophila model for MEN2A and MEN2B diseases by targeting oncogenic forms of RET to the developing Drosophila eye. Here we show that, when fed orally, ZD6474 suppressed RET-mediated phenotypes within the context of this in vivo model. Importantly, ZD6474 showed high efficacy and very low toxicity. This compound failed to significantly suppress an activated form of another RTK, the Drosophila epidermal growth factor receptor, nor did it suppress the activity of downstream components of the RET/Ras pathway. Our results support the view that targeting chemical kinase inhibitors such as ZD6474 to tissues with oncogenic forms of RET is a useful treatment strategy for RET-dependent carcinomas.


The EMBO Journal | 2012

Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila

Julia B. Cordero; Rhoda Stefanatos; Alessandro Scopelliti; Marcos Vidal; Owen J. Sansom

The ability to regenerate following stress is a hallmark of self‐renewing tissues. However, little is known about how regeneration differs from homeostatic tissue maintenance. Here, we study the role and regulation of Wingless (Wg)/Wnt signalling during intestinal regeneration using the Drosophila adult midgut. We show that Wg is produced by the intestinal epithelial compartment upon damage or stress and it is exclusively required for intestinal stem cell (ISC) proliferation during tissue regeneration. Reducing Wg or downstream signalling components from the intestinal epithelium blocked tissue regeneration. Importantly, we demonstrate that Wg from the undifferentiated progenitor cell, the enteroblast, is required for Myc‐dependent ISC proliferation during regeneration. Similar to young regenerating tissues, ageing intestines required Wg and Myc for ISC hyperproliferation. Unexpectedly, our results demonstrate that epithelial but not mesenchymal Wg is essential for ISC proliferation in response to damage, while neither source of the ligand is solely responsible for ISC maintenance and tissue self‐renewal in unchallenged tissues. Therefore, fine‐tuning Wnt results in optimal balance between the ability to respond to stress without negatively affecting organismal viability.


Cancer Research | 2012

Hedgehog signaling inhibition blocks growth of resistant tumors through effects on tumor microenvironment.

Emanuela Heller; Michelle A. Hurchla; Jingyu Xiang; Xinming Su; Sara Chen; Jochen G. Schneider; Kyu Sang Joeng; Marcos Vidal; Leah Goldberg; Hongju Deng; Mary C. Hornick; Julie L. Prior; David Piwnica-Worms; Fanxin Long; Ross L. Cagan; Katherine N. Weilbaecher

Hedgehog (Hh) signaling is implicated in bone development and cellular transformation. Here we show that inhibition of Hh pathway activity inhibits tumor growth through effects on the microenvironment. Pharmacologic inhibition of the Hh effector Smoothened (Smo) increased trabecular bone in vivo and inhibited osteoclastogenesis in vitro. In addition, enhanced Hh signaling due to heterozygosity of the Hh inhibitory receptor Patched (Ptch1(+/-)) increased bone resorption, suggesting direct regulation of osteoclast (OC) activity by the Hh pathway. Ptch1(+/-) mice had increased bone metastatic and subcutaneous tumor growth, suggesting that increased Hh activation in host cells promoted tumor growth. Subcutaneous growth of Hh-resistant tumor cells was inhibited by LDE225, a novel orally bioavailable SMO antagonist, consistent with effects on tumor microenvironment. Knockdown of the Hh ligand Sonic Hh (SHH) in these cells decreased subcutaneous tumor growth and decreased stromal cell production of interleukin-6, indicating that tumor-derived Hh ligands stimulated tumor growth in a paracrine fashion. Together our findings show that inhibition of the Hh pathway can reduce tumor burden, regardless of tumor Hh responsiveness, through effects on tumor cells, OCs, and stromal cells within the tumor microenvironment. Hh may be a promising therapeutic target for solid cancers and bone metastases.


Development | 2012

Non-autonomous crosstalk between the Jak/Stat and EGFR pathways mediates Apc1-driven intestinal stem cell hyperplasia in the Drosophila adult midgut

Julia B. Cordero; Rhoda Stefanatos; Kevin Myant; Marcos Vidal; Owen J. Sansom

Inactivating mutations within adenomatous polyposis coli (APC), a negative regulator of Wnt signaling, are responsible for most sporadic and hereditary forms of colorectal cancer (CRC). Here, we use the adult Drosophila midgut as a model system to investigate the molecular events that mediate intestinal hyperplasia following loss of Apc in the intestine. Our results indicate that the conserved Wnt target Myc and its binding partner Max are required for the initiation and maintenance of intestinal stem cell (ISC) hyperproliferation following Apc1 loss. Importantly, we find that loss of Apc1 leads to the production of the interleukin-like ligands Upd2/3 and the EGF-like Spitz in a Myc-dependent manner. Loss of Apc1 or high Wg in ISCs results in non-cell-autonomous upregulation of upd3 in enterocytes and subsequent activation of Jak/Stat signaling in ISCs. Crucially, knocking down Jak/Stat or Spitz/Egfr signaling suppresses Apc1-dependent ISC hyperproliferation. In summary, our results uncover a novel non-cell-autonomous interplay between Wnt/Myc, Egfr and Jak/Stat signaling in the regulation of intestinal hyperproliferation. Furthermore, we present evidence suggesting potential conservation in mouse models and human CRC. Therefore, the Drosophila adult midgut proves to be a powerful genetic system to identify novel mediators of APC phenotypes in the intestine.


Cell Reports | 2014

Transformed Epithelia Trigger Non-Tissue-Autonomous Tumor Suppressor Response by Adipocytes via Activation of Toll and Eiger/TNF Signaling

Federica Parisi; Rhoda Stefanatos; Karen Strathdee; Yachuan Yu; Marcos Vidal

High tumor burden is associated with increased levels of circulating inflammatory cytokines that influence the pathophysiology of the tumor and its environment. The cellular and molecular events mediating the organismal response to a growing tumor are poorly understood. Here, we report a bidirectional crosstalk between epithelial tumors and the fat body-a peripheral immune tissue-in Drosophila. Tumors trigger a systemic immune response through activation of Eiger/TNF signaling, which leads to Toll pathway upregulation in adipocytes. Reciprocally, Toll elicits a non-tissue-autonomous program in adipocytes, which drives tumor cell death. Hemocytes play a critical role in this system by producing the ligands Spätzle and Eiger, which are required for Toll activation in the fat body and tumor cell death. Altogether, our results provide a paradigm for a long-range tumor suppression function of adipocytes in Drosophila, which may represent an evolutionarily conserved mechanism in the organismal response to solid tumors.

Collaboration


Dive into the Marcos Vidal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross L. Cagan

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Adriana Dusso

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Katherine N. Weilbaecher

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorena Salavaggione

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Lourdes R. Ylagan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mark Wilkins

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge