Marcus A. Gray
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcus A. Gray.
Biological Psychiatry | 2009
Neil A. Harrison; Lena Brydon; Cicely Walker; Marcus A. Gray; Andrew Steptoe; Hugo D. Critchley
Background Inflammatory cytokines are implicated in the pathophysiology of depression. In rodents, systemically administered inflammatory cytokines induce depression-like behavior. Similarly in humans, therapeutic interferon-α induces clinical depression in a third of patients. Conversely, patients with depression also show elevated pro-inflammatory cytokines. Objectives To determine the neural mechanisms underlying inflammation-associated mood change and modulatory effects on circuits involved in mood homeostasis and affective processing. Methods In a double-blind, randomized crossover study, 16 healthy male volunteers received typhoid vaccination or saline (placebo) injection in two experimental sessions. Mood questionnaires were completed at baseline and at 2 and 3 hours. Two hours after injection, participants performed an implicit emotional face perception task during functional magnetic resonance imaging. Analyses focused on neurobiological correlates of inflammation-associated mood change and affective processing within regions responsive to emotional expressions and implicated in the etiology of depression. Results Typhoid but not placebo injection produced an inflammatory response indexed by increased circulating interleukin-6 and significant mood reduction at 3 hours. Inflammation-associated mood deterioration correlated with enhanced activity within subgenual anterior cingulate cortex (sACC) (a region implicated in the etiology of depression) during emotional face processing. Furthermore, inflammation-associated mood change reduced connectivity of sACC to amygdala, medial prefrontal cortex, nucleus accumbens, and superior temporal sulcus, which was modulated by peripheral interleukin-6. Conclusions Inflammation-associated mood deterioration is reflected in changes in sACC activity and functional connectivity during evoked responses to emotional stimuli. Peripheral cytokines modulate this mood-dependent sACC connectivity, suggesting a common pathophysiological basis for major depressive disorder and sickness-associated mood change and depression.
The Journal of Neuroscience | 2009
Dean Mobbs; Jennifer L. Marchant; Demis Hassabis; Ben Seymour; Geoffrey Tan; Marcus A. Gray; Predrag Petrovic; R. J. Dolan; Chris Frith
Postencounter and circa-strike defensive contexts represent two adaptive responses to potential and imminent danger. In the context of a predator, the postencounter reflects the initial detection of the potential threat, whereas the circa-strike is associated with direct predatory attack. We used functional magnetic resonance imaging to investigate the neural organization of anticipation and avoidance of artificial predators with high or low probability of capturing the subject across analogous postencounter and circa-strike contexts of threat. Consistent with defense systems models, postencounter threat elicited activity in forebrain areas, including subgenual anterior cingulate cortex (sgACC), hippocampus, and amygdala. Conversely, active avoidance during circa-strike threat increased activity in mid-dorsal ACC and midbrain areas. During the circa-strike condition, subjects showed increased coupling between the midbrain and mid-dorsal ACC and decreased coupling with the sgACC, amygdala, and hippocampus. Greater activity was observed in the right pregenual ACC for high compared with low probability of capture during circa-strike threat. This region showed decreased coupling with the amygdala, insula, and ventromedial prefrontal cortex. Finally, we found that locomotor errors correlated with subjective reports of panic for the high compared with low probability of capture during the circa-strike threat, and these panic-related locomotor errors were correlated with midbrain activity. These findings support models suggesting that higher forebrain areas are involved in early-threat responses, including the assignment and control of fear, whereas imminent danger results in fast, likely “hard-wired,” defensive reactions mediated by the midbrain.
Biological Psychiatry | 2009
Neil A. Harrison; Lena Brydon; Cicely Walker; Marcus A. Gray; Andrew Steptoe; R. J. Dolan; Hugo D. Critchley
Background Inflammation is associated with psychological, emotional, and behavioral disturbance, known as sickness behavior. Inflammatory cytokines are implicated in coordinating this central motivational reorientation accompanying peripheral immunologic responses to pathogens. Studies in rodents suggest an afferent interoceptive neural mechanism, although comparable data in humans are lacking. Methods In a double-blind, randomized crossover study, 16 healthy male volunteers received typhoid vaccination or saline (placebo) injection in two experimental sessions. Profile of Mood State questionnaires were completed at baseline and at 2 and 3 hours. Two hours after injection, participants performed a high-demand color word Stroop task during functional magnetic resonance imaging. Blood samples were performed at baseline and immediately after scanning. Results Typhoid but not placebo injection produced a robust inflammatory response indexed by increased circulating interleukin-6 accompanied by a significant increase in fatigue, confusion, and impaired concentration at 3 hours. Performance of the Stroop task under inflammation activated brain regions encoding representations of internal bodily state. Spatial and temporal characteristics of this response are consistent with interoceptive information flow via afferent autonomic fibers. During performance of this task, activity within interoceptive brain regions also predicted individual differences in inflammation-associated but not placebo-associated fatigue and confusion. Maintenance of cognitive performance, despite inflammation-associated fatigue, led to recruitment of additional prefrontal cortical regions. Conclusions These findings suggest that peripheral infection selectively influences central nervous system function to generate core symptoms of sickness and reorient basic motivational states.
The Journal of Neuroscience | 2010
Neil A. Harrison; Marcus A. Gray; Peter J. Gianaros; Hugo D. Critchley
Central to Walter Cannons challenge to peripheral theories of emotion was that bodily arousal responses are too undifferentiated to account for the wealth of emotional feelings. Despite considerable evidence to the contrary, this remains widely accepted and for nearly a century has left the issue of whether visceral afferent signals are essential for emotional experience unresolved. Here we combine functional magnetic resonance imaging and multiorgan physiological recording to dissect experience of two distinct disgust forms and their relationship to peripheral and central physiological activity. We show that experience of core and body–boundary–violation disgust are dissociable in both peripheral autonomic and central neural responses and also that emotional experience specific to anterior insular activity encodes these different underlying patterns of peripheral physiological responses. These findings demonstrate that organ-specific physiological responses differentiate emotional feeling states and support the hypothesis that central representations of organism physiological homeostasis constitute a critical aspect of the neural basis of feelings.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Marcus A. Gray; Peter Taggart; Peter Sutton; David Groves; Diana R. Holdright; David Bradbury; David Brull; Hugo D. Critchley
Emotional trauma and psychological stress can precipitate cardiac arrhythmia and sudden death through arrhythmogenic effects of efferent sympathetic drive. Patients with preexisting heart disease are particularly at risk. Moreover, generation of proarrhythmic activity patterns within cerebral autonomic centers may be amplified by afferent feedback from a dysfunctional myocardium. An electrocortical potential reflecting afferent cardiac information has been described, reflecting individual differences in interoceptive sensitivity (awareness of ones own heartbeats). To inform our understanding of mechanisms underlying arrhythmogenesis, we extended this approach, identifying electrocortical potentials corresponding to the cortical expression of afferent information about the integrity of myocardial function during stress. We measured changes in cardiac response simultaneously with electroencephalography in patients with established ventricular dysfunction. Experimentally induced mental stress enhanced cardiovascular indices of sympathetic activity (systolic blood pressure, heart rate, ventricular ejection fraction, and skin conductance) across all patients. However, the functional response of the myocardium varied; some patients increased, whereas others decreased, cardiac output during stress. Across patients, heartbeat-evoked potential amplitude at left temporal and lateral frontal electrode locations correlated with stress-induced changes in cardiac output, consistent with an afferent cortical representation of myocardial function during stress. Moreover, the amplitude of the heartbeat-evoked potential in the left temporal region reflected the proarrhythmic status of the heart (inhomogeneity of left ventricular repolarization). These observations delineate a cortical representation of cardiac function predictive of proarrhythmic abnormalities in cardiac repolarization. Our findings highlight the dynamic interaction of heart and brain in stress-induced cardiovascular morbidity.
PLOS ONE | 2007
Marcus A. Gray; Neil A. Harrison; Stefan Wiens; Hugo D. Critchley
Background James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. Methodology/Principal Findings We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. Conclusions/Significance Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order “cognitive” representations of bodily arousal state.
Neuron | 2007
Marcus A. Gray; Hugo D. Critchley
Summary Awareness of ones physiology is an important component of emotion. How might these processes be related to addiction? In a recent issue of Science, Naqvi et al. demonstrated that smoking addiction is disrupted by damage to the insula cortex. This suggests that brain circuits mediating interoception also contribute to craving states.
The Journal of Neuroscience | 2009
Marcus A. Gray; Karin Rylander; Neil A. Harrison; B. Gunnar Wallin; Hugo D. Critchley
Central nervous processing of environmental stimuli requires integration of sensory information with ongoing autonomic control of cardiovascular function. Rhythmic feedback of cardiac and baroreceptor activity contributes dynamically to homeostatic autonomic control. We examined how the processing of brief somatosensory stimuli is altered across the cardiac cycle to evoke differential changes in bodily state. Using functional magnetic resonance imaging of brain and noninvasive beat-to-beat cardiovascular monitoring, we show that stimuli presented before and during early cardiac systole elicited differential changes in neural activity within amygdala, anterior insula and pons, and engendered different effects on blood pressure. Stimulation delivered during early systole inhibited blood pressure increases. Individual differences in heart rate variability predicted magnitude of differential cardiac timing responses within periaqueductal gray, amygdala and insula. Our findings highlight integration of somatosensory and phasic baroreceptor information at cortical, limbic and brainstem levels, with relevance to mechanisms underlying pain control, hypertension and anxiety.
NeuroImage | 2004
Andrew H. Kemp; Marcus A. Gray; Richard B. Silberstein; Stuart M. Armstrong; Pradeep J. Nathan
The serotonergic system is one of the major systems targeted in the pharmacological treatment of a wide range of mood disorders including depression; however, little is known about the neurophysiological mechanisms underlying the effects of serotonin (5-HT) on affective phenomena including emotional behaviours, mood and emotional processing. The aim of the current study was to investigate how 5-HT acutely modulates steady-state visually evoked potentials (SSVEP), heart rate (HR) and verbal ratings associated with the viewing of differently valent emotional images. In a randomised double-blind, placebo-controlled design, 17 healthy subjects were tested under two acute treatment conditions: placebo and citalopram (20 mg) (a selective serotonin re-uptake inhibitor, or SSRI). Participants were tested 2 h post treatment whilst viewing 75 images (categorised as pleasant, neutral or unpleasant). Results indicate that under placebo treatment, processing of unpleasant valence [unpleasant (-) neutral images] was associated with decreases in SSVEP amplitude and latency in frontal and occipital cortices, whereas processing of pleasant valence [pleasant (-) neutral images] was associated with amplitude decreases and latency increases within frontal and left temporoparietal cortices. Decreases in both amplitude and latency are both interpreted as surrogate measures of cortical activation or excitation. Citalopram relative to placebo attenuated the electrophysiological activation to unpleasant valence within frontal and occipital cortices, but potentiated electrophysiological activation (amplitude only) to pleasant valence within parietooccipital cortices. Citalopram relative to placebo also suppressed differences in heart rate associated with the viewing of pleasant and unpleasant images, but did not alter subjects subjective responses to emotional images. Results suggest that responsiveness to pleasant and unpleasant stimuli following neurochemical modulation may vary across different response systems (i.e. self-report, HR and SSVEP). Electrophysiological findings suggest that acute serotonergic augmentation with citalopram modulates cortical processing of emotionally valent stimuli such that response to pleasant valence is potentiated and response to unpleasant valence is suppressed. The findings suggest a possible neurophysiological mechanism underlying antidepressant drug action on emotion.
Autonomic Neuroscience: Basic and Clinical | 2011
Hugo D. Critchley; Yoko Nagai; Marcus A. Gray; Christopher J. Mathias
The combination of functional brain imaging with measurement of peripheral autonomic responses in humans can provide insight into the embodiment of mental processes and the integration of cognition and emotion with changes in somatic physiology. Initial studies in healthy people and patents validate inferences from more detailed animal experiments regarding the organization of central autonomic control. In particular these have illustrated the coupling of behaviour with sympathetic arousal. Over the last two decades, the growth of emotional neuroscience alongside advances in functional brain imaging has fuelled investigations of relationships between perception, feeling states, somatic and autonomic bodily reactions. These studies have driven a more mechanistic understanding of brain systems through which bodily state is regulated and modified to support adaptive behaviour. In parallel, they have enabled the application of human neuroimaging to autonomic neuroscience. Specific methodological challenges are posed by combining physiological recordings with neuroimaging techniques, particularly functional magnetic resonance brain imaging, which are nevertheless addressable. Using such methods, the neural correlates of dynamic autonomic control has been systematically examined in studies of healthy individuals and patients with specific autonomic dysfunction (including autonomic failure, autonomic (neurally) mediated syncope and the postural tachycardia syndrome). These studies reveal antagonistic interaction of systems underpinning autonomic cardiovascular control (involving mid and subgenual cingulate cortices) and partial organ-specificity of other axes of autonomic response. Current and anticipated technical advances, including the integration of autonomically-focused microneurography and neural stimulation with advanced neuroimaging, will continue to provide detailed insight into dynamics of autonomic control. Translating these insights into clinical benefits remains a priority.