Marcus Adolph
Technical University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcus Adolph.
Nature | 2011
Henry N. Chapman; Petra Fromme; Anton Barty; Thomas A. White; Richard A. Kirian; Andrew Aquila; Mark S. Hunter; Joachim Schulz; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Filipe R. N. C. Maia; Andrew V. Martin; Ilme Schlichting; Lukas Lomb; Nicola Coppola; Robert L. Shoeman; Sascha W. Epp; Robert Hartmann; Daniel Rolles; A. Rudenko; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Peter Holl; Mengning Liang; Miriam Barthelmess; Carl Caleman; Sébastien Boutet; Michael J. Bogan
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
Nature | 2011
M. Marvin Seibert; Tomas Ekeberg; Filipe R. N. C. Maia; Martin Svenda; Jakob Andreasson; O Jonsson; Duško Odić; Bianca Iwan; Andrea Rocker; Daniel Westphal; Max F. Hantke; Daniel P. DePonte; Anton Barty; Joachim Schulz; Lars Gumprecht; Nicola Coppola; Andrew Aquila; Mengning Liang; Thomas A. White; Andrew V. Martin; Carl Caleman; Stephan Stern; Chantal Abergel; Virginie Seltzer; Jean-Michel Claverie; Christoph Bostedt; John D. Bozek; Sébastien Boutet; A. Miahnahri; Marc Messerschmidt
X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
Physical Review Letters | 2014
Jochen Küpper; Stephan Stern; Lotte Holmegaard; Frank Filsinger; Arnaud Rouzée; Artem Rudenko; Per Johnsson; Andrew V. Martin; Marcus Adolph; Andrew Aquila; Sasa Bajt; Anton Barty; Christoph Bostedt; John D. Bozek; Carl Caleman; Ryan Coffee; Nicola Coppola; Tjark Delmas; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Tais Gorkhover; Lars Gumprecht; Andreas Hartmann; Robert Hartmann; Günter Hauser; Peter Holl; André Hömke; Nils Kimmel; Faton Krasniqi
We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e.g., structural-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules.
Nature Communications | 2015
Ingo Barke; Hannes Hartmann; Daniela Rupp; Leonie Flückiger; Mario Sauppe; Marcus Adolph; Sebastian Schorb; Christoph Bostedt; Rolf Treusch; Christian Peltz; Stephan Bartling; Thomas Fennel; Karl-Heinz Meiwes-Broer; T. Möller
The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science.
Journal of Physics B | 2014
Daniel Rolles; Rebecca Boll; Marcus Adolph; Andy Aquila; Christoph Bostedt; John D. Bozek; Henry N. Chapman; Ryan Coffee; Nicola Coppola; P. Decleva; Tjark Delmas; Sascha W. Epp; Benjamin Erk; Frank Filsinger; Lutz Foucar; Lars Gumprecht; André Hömke; Tais Gorkhover; Lotte Holmegaard; Per Johnsson; Ch Kaiser; Faton Krasniqi; K. U. Kühnel; Jochen Maurer; Marc Messerschmidt; R. Moshammer; Wilson Quevedo; Ivan Rajkovic; Arnaud Rouzée; Benedikt Rudek
We present time-resolved femtosecond photoelectron momentum images and angular distributions of dissociating, laser-aligned 1,4-dibromobenzene (C6H4Br2) molecules measured in a near-infrared pump, soft-x-ray probe experiment performed at an x-ray free-electron laser. The observed alignment dependence of the bromine 2p photoelectron angular distributions is compared to density functional theory calculations and interpreted in terms of photoelectron diffraction. While no clear time-dependent effects are observed in the angular distribution of the Br(2p) photoelectrons, other, low-energy electrons show a pronounced dependence on the time delay between the near-infrared laser and the x-ray pulse.
Journal of Physics B | 2012
Maria Krikunova; Marcus Adolph; Tais Gorkhover; Daniela Rupp; Sebastian Schorb; Christoph Bostedt; Sebastian Roling; B. Siemer; Rolf Mitzner; H. Zacharias; T. Möller
The expansion and disintegration dynamics of xenon clusters initiated by the ionization with femtosecond soft x-ray extreme ultraviolet (XUV) pulses were studied with pump–probe spectroscopy using the autocorrelator setup of the Free-Electron LASer in Hamburg (FLASH) facility. The ionization by the first XUV pulse of 92 eV photon energy (8 × 10 12 Wc m −2 ) leads to the generation of a large number of quasi-free electrons trapped by the space charge of the cluster ions. A temporally delayed, more intense probe (4 × 10 13 Wc m −2 ) pulse substantially increases a population of nanoplasma electrons providing a way of probing plasma states in the expanding cluster by tracing the average charge of fragment ions. The results of the study reveal a timescale for cluster expansion and disintegration, which depends essentially on the initial cluster size. The average charge state of fragment ions, and thus the cluster plasma changes significantly on a timescale of 1–3 ps. (Some figures may appear in colour only in the online journal)
Faraday Discussions | 2014
Rebecca Boll; Arnaud Rouzée; Marcus Adolph; Denis Anielski; Andrew Aquila; Sadia Bari; Cédric Bomme; Christoph Bostedt; John D. Bozek; Henry N. Chapman; Lauge Christensen; Ryan Coffee; Niccola Coppola; Sankar De; Piero Decleva; Sascha W. Epp; Benjamin Erk; Frank Filsinger; Lutz Foucar; Tais Gorkhover; Lars Gumprecht; André Hömke; Lotte Holmegaard; Per Johnsson; Jens S. Kienitz; Thomas Kierspel; Faton Krasniqi; Kai-Uwe Kühnel; Jochen Maurer; Marc Messerschmidt
This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C(8)H(5)F) and dissociating, laser-aligned 1,4-dibromobenzene (C(6)H(4)Br(2)) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.
Journal of Chemical Physics | 2014
Daniela Rupp; Marcus Adolph; Leonie Flückiger; Tais Gorkhover; Jan Philippe Müller; Maria Müller; Mario Sauppe; David Wolter; Sebastian Schorb; Rolf Treusch; Christoph Bostedt; T. Möller
Extremely large xenon clusters with sizes exceeding the predictions of the Hagena scaling law by several orders of magnitude are shown to be produced in pulsed gas jets. The cluster sizes are determined using single-shot single-particle imaging experiments with short-wavelength light pulses from the free-electron laser in Hamburg (FLASH). Scanning the time delay between the pulsed cluster source and the intense femtosecond x-ray pulses first shows a main plateau with size distributions in line with the scaling laws, which is followed by an after-pulse of giant clusters. For the extremely large clusters with radii of several hundred nanometers the x-ray scattering patterns indicate a grainy substructure of the particles, suggesting that they grow by cluster coagulation.
New Journal of Physics | 2012
Daniela Rupp; Marcus Adolph; Tais Gorkhover; Sebastian Schorb; David Wolter; Robert Hartmann; Nils Kimmel; Christian Reich; T Feigl; A. R. B. de Castro; Rolf Treusch; L. Strüder; T. Möller; Christoph Bostedt
Scattering experiments on xenon nanoclusters with high-intensity soft x-ray laser pulses from the Free-Electron LASer in Hamburg (FLASH) are performed to investigate different cluster morphologies in the gas phase. Three different types of scattering patterns can be identified. The most frequent pattern of concentric rings reflects the event of a single spherical cluster in focus. Fine interference rings similar to Newton rings appear when two clusters are illuminated at μm distance, revealing three-dimensional information about the location of the clusters. Between 10 and 30% of all hits show a previously unknown twin cluster configuration with two clusters in direct contact. Simulations of scattering patterns for twin clusters with different sizes of the two particles, degree of fusion and orientation in space allow us to explain all the observed patterns.
New Journal of Physics | 2016
Leonie Flückiger; Daniela Rupp; Marcus Adolph; Tais Gorkhover; Maria Krikunova; Maria Müller; Tim Oelze; Y. Ovcharenko; Mario Sauppe; Sebastian Schorb; Christoph Bostedt; S. Düsterer; M Harmand; Harald Redlin; Rolf Treusch; T. Möller
The evolution of individual, large gas-phase xenon clusters, turned into a nanoplasma by a high power infrared laser pulse, is tracked from femtoseconds up to nanoseconds after laser excitation via coherent diffractive imaging, using ultra-short soft x-ray free electron laser pulses. A decline of scattering signal at high detection angles with increasing time delay indicates a softening of the cluster surface. Here we demonstrate, for the first time a representative speckle pattern of a new stage of cluster expansion for xenon clusters after a nanosecond irradiation. The analysis of the measured average speckle size and the envelope of the intensity distribution reveals a mean cluster size and length scale of internal density fluctuations. Furthermore, the measured diffraction patterns were reproduced by scattering simulations which assumed that the cluster expands with pronounced internal density fluctuations hundreds of picoseconds after excitation.