Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus C. de Goffau is active.

Publication


Featured researches published by Marcus C. de Goffau.


Cell Host & Microbe | 2015

The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes

Aleksandar D. Kostic; Dirk Gevers; Heli Siljander; Tommi Vatanen; Tuulia Hyötyläinen; Anu-Maaria Hämäläinen; Aleksandr Peet; Vallo Tillmann; Päivi Pöhö; Ismo Mattila; Harri Lähdesmäki; Eric A. Franzosa; Outi Vaarala; Marcus C. de Goffau; Hermie J. M. Harmsen; Jorma Ilonen; Suvi Virtanen; Clary B. Clish; Matej Orešič; Curtis Huttenhower; Mikael Knip; Ramnik J. Xavier

Colonization of the fetal and infant gut microbiome results in dynamic changes in diversity, which can impact disease susceptibility. To examine the relationship between human gut microbiome dynamics throughout infancy and type 1 diabetes (T1D), we examined a cohort of 33 infants genetically predisposed to T1D. Modeling trajectories of microbial abundances through infancy revealed a subset of microbial relationships shared across most subjects. Although strain composition of a given species was highly variable between individuals, it was stable within individuals throughout infancy. Metabolic composition and metabolic pathway abundance remained constant across time. A marked drop in alpha-diversity was observed in T1D progressors in the time window between seroconversion and T1D diagnosis, accompanied by spikes in inflammation-favoring organisms, gene functions, and serum and stool metabolites. This work identifies trends in the development of the human infant gut microbiome along with specific alterations that precede T1D onset and distinguish T1D progressors from nonprogressors.


Diabetes | 2013

Fecal Microbiota Composition Differs Between Children With β-Cell Autoimmunity and Those Without

Marcus C. de Goffau; Kristiina Luopajärvi; Mikael Knip; Jorma Ilonen; Terhi Ruohtula; Taina Härkönen; L. Orivuori; Saara Hakala; Gjalt W. Welling; Hermie J. M. Harmsen; Outi Vaarala

The role of the intestinal microbiota as a regulator of autoimmune diabetes in animal models is well-established, but data on human type 1 diabetes are tentative and based on studies including only a few study subjects. To exclude secondary effects of diabetes and HLA risk genotype on gut microbiota, we compared the intestinal microbiota composition in children with at least two diabetes-associated autoantibodies (n = 18) with autoantibody-negative children matched for age, sex, early feeding history, and HLA risk genotype using pyrosequencing. Principal component analysis indicated that a low abundance of lactate-producing and butyrate-producing species was associated with β-cell autoimmunity. In addition, a dearth of the two most dominant Bifidobacterium species, Bifidobacterium adolescentis and Bifidobacterium pseudocatenulatum, and an increased abundance of the Bacteroides genus were observed in the children with β-cell autoimmunity. We did not find increased fecal calprotectin or IgA as marker of inflammation in children with β-cell autoimmunity. Functional studies related to the observed alterations in the gut microbiome are warranted because the low abundance of bifidobacteria and butyrate-producing species could adversely affect the intestinal epithelial barrier function and inflammation, whereas the apparent importance of the Bacteroides genus in development of type 1 diabetes is insufficiently understood.


Nature Communications | 2013

Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin

Marleen van Oosten; Tina Schäfer; Joost A. C. Gazendam; Knut Ohlsen; Eleni Tsompanidou; Marcus C. de Goffau; Hermie J. M. Harmsen; Lucia M. A. Crane; Ed Lim; Kevin P. Francis; Lael Cheung; Michael Olive; Vasilis Ntziachristos; Jan Maarten van Dijl; Gooitzen M. van Dam

Invasive and biomaterial-associated infections in humans are often difficult to diagnose and treat. Here, guided by recent advances in clinically relevant optical imaging technologies, we explore the use of fluorescently labelled vancomycin (vanco-800CW) to specifically target and detect infections caused by Gram-positive bacteria. The application potential of vanco-800CW for real-time in vivo imaging of bacterial infections is assessed in a mouse myositis model and a human post-mortem implant model. We show that vanco-800CW can specifically detect Gram-positive bacterial infections in our mouse myositis model, discriminate bacterial infections from sterile inflammation in vivo and detect biomaterial-associated infections in the lower leg of a human cadaver. We conclude that vanco-800CW has a high potential for enhanced non-invasive diagnosis of infections with Gram-positive bacteria and is a promising candidate for early-phase clinical trials.


FEMS Microbiology Ecology | 2013

Diversity of human small intestinal Streptococcus and Veillonella populations

Bartholomeus van den Bogert; Oylum Erkus; Jos Boekhorst; Marcus C. de Goffau; Eddy J. Smid; Erwin G. Zoetendal; Michiel Kleerebezem

Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed abundant populations of Streptococcus spp. most affiliated with S. salivarius, S. thermophilus, and S. parasanguinis, as well as Veillonella spp. affiliated with V. atypica, V. parvula, V. dispar, and V. rogosae. Relative abundances varied per subject and time of sampling. Streptococcus and Veillonella isolates were cultured using selective media from ileostoma effluent samples collected at two time points from a single subject. The richness of the Streptococcus and Veillonella isolates was assessed at species and strain level by 16S rRNA gene sequencing and genetic fingerprinting, respectively. A total of 160 Streptococcus and 37 Veillonella isolates were obtained. Genetic fingerprinting differentiated seven Streptococcus lineages from ileostoma effluent, illustrating the strain richness within this ecosystem. The Veillonella isolates were represented by a single phylotype. Our study demonstrated that the small intestinal Streptococcus populations displayed considerable changes over time at the genetic lineage level because only representative strains of a single Streptococcus lineage could be cultivated from ileostoma effluent at both time points.


Gut | 2015

The ATG16L1–T300A allele impairs clearance of pathosymbionts in the inflamed ileal mucosa of Crohn's disease patients

Mehdi Sadaghian Sadabad; Anouk Regeling; Marcus C. de Goffau; Tjasso Blokzijl; Rinse K. Weersma; John Penders; Klaas Nico Faber; Hermie J. M. Harmsen; Gerard Dijkstra

Objective Crohns disease (CD) is caused by a complex interplay among genetic, microbial and environmental factors. ATG16L1 is an important genetic factor involved in innate immunity, including autophagy and phagocytosis of microbial components from the gut. We investigated the effect of inflammation on the composition of microbiota in the ileal mucosa of CD patients in relation to the ATG16L1 risk status. Design Biopsies (n=35) were obtained from inflamed and non-inflamed regions of the terminal ileum of 11 CD patients homozygous for the ATG16L1 risk allele (ATG16L1-T300A) and 9 CD patients homozygous for the ATG16L1 protective allele (ATG16L1-T300). Biopsy DNA was extracted and the bacterial composition analysed by pyrosequencing. Intracellular survival rates of adherent-invasive Escherichia coli (AIEC) were analysed by determining colony forming units after exposure to monocytes isolated from healthy volunteers homozygous for the ATG16L1 risk or protective allele. Results Inflamed ileal tissue from patients homozygous for the ATG16L1 risk allele contained increased numbers of Fusobacteriaceae, whereas inflamed ileal tissue of patients homozygous for the ATG16L1 protective allele showed decreased numbers of Bacteroidaceae and Enterobacteriaceae and increased Lachnospiraceae. The ATG16L1 allele did not affect the bacterial composition in the non-inflamed ileal tissue. Monocytes homozygous for the ATG16L1 risk allele showed impaired killing of AIEC under inflammatory conditions compared with those homozygous for the ATG16L1 protective allele. Conclusions CD patients homozygous for the ATG16L1–T300A risk allele show impaired clearance of pathosymbionts in ileal inflammation indicating that ATG16L1 is essential for effective elimination of pathosymbionts upon inflammation.


Clinical Infectious Diseases | 2016

A Necrotizing Enterocolitis-Associated Gut Microbiota Is Present in the Meconium: Results of a Prospective Study

Fardou H. Heida; Anne G. van Zoonen; Jan B. F. Hulscher; Bastiaan J. te Kiefte; Rianne Wessels; Elisabeth M. W. Kooi; Arend F. Bos; Hermie J. M. Harmsen; Marcus C. de Goffau

BACKGROUND Anomalous intestinal microbiota development is supposedly associated with development of necrotizing enterocolitis (NEC). Our aim in this study was to identify the intestinal microbiota of patients at risk for NEC. METHODS In a prospective trial that investigated prognostic factors for development of NEC in high-risk neonates (NTR4153), 11 NEC cases were gestational age/birthweight matched with controls (ratio of 1:2). Feces were collected twice a week. We used the first feces sample of each patient (meconium), as well as the last 2 feces samples prior to development of NEC. DNA was extracted, and the bacterial 16S rRNA genes were analyzed on a MiSeq sequencer. RESULTS The presence and abundance of Clostridium perfringens (8.4%) and Bacteroides dorei (0.9%) in meconium were increased in neonates who developed NEC compared with controls (0.1% and 0.2%; both species, P < .001). In post-meconium samples, the abundance of staphylococci became negatively associated with NEC development (P = .1 and P = .01 for consecutive samples); Clostridium perfringens continued to be more prevalent in NEC cases. Early enteral feeding and, in particular, breast milk were correlated with an increase in lactate-producing bacilli in post-meconium samples (ρ = -0.45; P = .004). CONCLUSIONS A NEC-associated gut microbiota can be identified in meconium samples; C. perfringens continues to be associated with NEC from the first meconium till just before NEC onset. In contrast, in post-meconium, increased numbers of staphylococci were negatively associated with NEC. These findings suggest causality but this causality should be verified in trials of induced infection in animals, targeted antibiotics, and/or probiotics. CLINICAL TRIALS REGISTRATION CALIFORNIA trial, registered under trial number NTR4153 in the Dutch Trial Registry.


Journal of Immunology | 2015

Th1/Th17 Plasticity Is a Marker of Advanced β Cell Autoimmunity and Impaired Glucose Tolerance in Humans

Linnea Reinert-Hartwall; Jarno Honkanen; Harri M. Salo; Janne K. Nieminen; Kristiina Luopajärvi; Taina Härkönen; Riitta Veijola; Olli Simell; Jorma Ilonen; Aleksandr Peet; Vallo Tillmann; Mikael Knip; Outi Vaarala; Katriina Koski; Matti Koski; Samppa J. Ryhänen; Anu-Maaria Hämäläinen; Anne Ormisson; Valentina Ulich; Elena Kuzmicheva; Sergei Mokurov; Svetlana Markova; Svetlana Pylova; Marina Isakova; Elena Shakurova; Vladimir Petrov; Natalya V. Dorshakova; Tatyana Karapetyan; Tatyana Varlamova; Minna Kiviniemi

Upregulation of IL-17 immunity and detrimental effects of IL-17 on human islets have been implicated in human type 1 diabetes. In animal models, the plasticity of Th1/Th17 cells contributes to the development of autoimmune diabetes. In this study, we demonstrate that the upregulation of the IL-17 pathway and Th1/Th17 plasticity in peripheral blood are markers of advanced β cell autoimmunity and impaired β cell function in human type 1 diabetes. Activated Th17 immunity was observed in the late stage of preclinical diabetes in children with β cell autoimmunity and impaired glucose tolerance, but not in children with early β cell autoimmunity. We found an increased ratio of IFN-γ/IL-17 expression in Th17 cells in children with advanced β cell autoimmunity, which correlated with HbA1c and plasma glucose concentrations in an oral glucose tolerance test, and thus impaired β cell function. Low expression of Helios was seen in Th17 cells, suggesting that Th1/Th17 cells are not converted thymus-derived regulatory T cells. Our results suggest that the development of Th1/Th17 plasticity may serve as a biomarker of disease progression from β cell autoantibody positivity to type 1 diabetes. These data in human type 1 diabetes emphasize the role of Th1/Th17 plasticity as a potential contributor to tissue destruction in autoimmune conditions.


Environmental Microbiology | 2009

Bacterial pleomorphism and competition in a relative humidity gradient

Marcus C. de Goffau; Xiaomei Yang; Jan Maarten van Dijl; Hermie J. M. Harmsen

The response of different bacterial species to reduced water availability was studied using a simple relative humidity gradient technique. Interestingly, distinct differences in morphology and growth patterns were observed between populations of the same species growing at different relative humidity. Gram-positive cocci increased in cell size as they approached humidity growth limits and staphylococcal species started growing in tetrad/cubical formations instead of their normal grape-like structures. Gram-negative rods displayed wave-like patterns, forming larger waves as they became increasingly filamentous at low humidity. In contrast, cells of the Gram-positive bacterium Bacillus subtilis became shorter, curved, and eventually almost coccoid. Moreover, B. subtilis started to sporulate at low humidity. The altered morphology and/or growth patterns of bacteria growing at low humidity might be more ecologically relevant than their textbook appearance at high humidity since their natural habitats are often dry. Transmission electron microscopic analyses revealed that staphylococci grown at low humidity have significantly thickened cell walls, which may explain why these cells displayed increased resistance to vancomycin. We conclude that our relative humidity gradient technique is widely applicable for investigating effects of relative humidity on microbial survival, growth and competitive success at solid-air interfaces, making it a versatile tool in microbial ecology.


Advances in Experimental Medicine and Biology | 2016

The Human Gut Microbiota

Hermie J. M. Harmsen; Marcus C. de Goffau

The microbiota in our gut performs many different essential functions that help us to stay healthy. These functions include vitamin production, regulation of lipid metabolism and short chain fatty acid production as fuel for epithelial cells and regulation of gene expression. There is a very numerous and diverse microbial community present in the gut, especially in the colon, with reported numbers of species that vary between 400 and 1500, for some those we even do not yet have culture representatives.A healthy gut microbiota is important for maintaining a healthy host. An aberrant microbiota can cause diseases of different nature and at different ages ranging from allergies at early age to IBD in young adults. This shows that our gut microbiota needs to be treated well to stay healthy. In this chapter we describe what we consider a healthy microbiota and discuss what the role of the microbiota is in various diseases. Research into these described dysbiosis conditions could lead to new strategies for treatment and/or management of our microbiota to improve health.


Environmental Microbiology | 2011

Microbial growth on the edge of desiccation

Marcus C. de Goffau; Jan Maarten van Dijl; Hermie J. M. Harmsen

The availability of water, which can be expressed in terms of water activity (a(w)), is one of the most important determinants for microbial homeostasis and growth on surface to air interfaces. Here we show, using an environmental control chamber containing a precisely controlled temperature/a(w) gradient in combination with a mathematical approach, that the environmental a(w) growth limit of a microorganism can be lower than its intracellular a(w) limit. This internal limit represents the point at which microbial cells cannot lower their internal a(w) any further in response to low external a(w) values without interfering with essential intracellular processes. To grow at external a(w) values below their internal limit, microbes need to generate more water metabolically than they lose to their environment. This internal a(w) limit can be calculated by measuring the a(w) growth limit of an organism at different water vapour diffusivities using barometric pressure as a variable. Fascinating morphological changes, such as rope-like superstructures formed by B. subtilis, are furthermore observed in response to low external a(w) values in particular around the calculated intracellular a(w) limit. The intracellular a(w) limit of an organism is a decisive parameter for water limitation-induced adaptations in cellular hydrophilicity and morphogenesis.

Collaboration


Dive into the Marcus C. de Goffau's collaboration.

Top Co-Authors

Avatar

Hermie J. M. Harmsen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Jan Maarten van Dijl

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikael Knip

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Aleksandr Peet

Tartu University Hospital

View shared research outputs
Top Co-Authors

Avatar

Vallo Tillmann

Tartu University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne G. van Zoonen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Arend F. Bos

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge