Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus J. Claesson is active.

Publication


Featured researches published by Marcus J. Claesson.


Nature | 2012

Gut microbiota composition correlates with diet and health in the elderly

Marcus J. Claesson; Ian B. Jeffery; Susana Conde; Susan E. Power; E.M. O’Connor; Siobhán Cusack; Hugh M. B. Harris; M. Coakley; Bhuvaneswari Lakshminarayanan; Orla O’Sullivan; Gerald F. Fitzgerald; Jennifer Deane; Michael O’Connor; Norma Harnedy; Kieran O’Connor; Denis O’Mahony; Douwe van Sinderen; Martina Wallace; Lorraine Brennan; Catherine Stanton; Julian Roberto Marchesi; Anthony P. Fitzgerald; Fergus Shanahan; Colin Hill; R. Paul Ross; Paul W. O’Toole

Alterations in intestinal microbiota composition are associated with several chronic conditions, including obesity and inflammatory diseases. The microbiota of older people displays greater inter-individual variation than that of younger adults. Here we show that the faecal microbiota composition from 178 elderly subjects formed groups, correlating with residence location in the community, day-hospital, rehabilitation or in long-term residential care. However, clustering of subjects by diet separated them by the same residence location and microbiota groupings. The separation of microbiota composition significantly correlated with measures of frailty, co-morbidity, nutritional status, markers of inflammation and with metabolites in faecal water. The individual microbiota of people in long-stay care was significantly less diverse than that of community dwellers. Loss of community-associated microbiota correlated with increased frailty. Collectively, the data support a relationship between diet, microbiota and health status, and indicate a role for diet-driven microbiota alterations in varying rates of health decline upon ageing.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Composition, variability, and temporal stability of the intestinal microbiota of the elderly

Marcus J. Claesson; Siobhán Cusack; Orla O'Sullivan; Rachel Greene-Diniz; Heleen de Weerd; E. Flannery; Julian Roberto Marchesi; Daniel Falush; Timothy G. Dinan; Gerald F. Fitzgerald; Catherine Stanton; Douwe van Sinderen; Michael B. O'Connor; Norma Harnedy; Kieran O'Connor; Colm Henry; Denis O'Mahony; Anthony P. Fitzgerald; Fergus Shanahan; Cillian Twomey; Colin Hill; R. Paul Ross; Paul W. O'Toole

Alterations in the human intestinal microbiota are linked to conditions including inflammatory bowel disease, irritable bowel syndrome, and obesity. The microbiota also undergoes substantial changes at the extremes of life, in infants and older people, the ramifications of which are still being explored. We applied pyrosequencing of over 40,000 16S rRNA gene V4 region amplicons per subject to characterize the fecal microbiota in 161 subjects aged 65 y and older and 9 younger control subjects. The microbiota of each individual subject constituted a unique profile that was separable from all others. In 68% of the individuals, the microbiota was dominated by phylum Bacteroides, with an average proportion of 57% across all 161 baseline samples. Phylum Firmicutes had an average proportion of 40%. The proportions of some phyla and genera associated with disease or health also varied dramatically, including Proteobacteria, Actinobacteria, and Faecalibacteria. The core microbiota of elderly subjects was distinct from that previously established for younger adults, with a greater proportion of Bacteroides spp. and distinct abundance patterns of Clostridium groups. Analyses of 26 fecal microbiota datasets from 3-month follow-up samples indicated that in 85% of the subjects, the microbiota composition was more like the corresponding time-0 sample than any other dataset. We conclude that the fecal microbiota of the elderly shows temporal stability over limited time in the majority of subjects but is characterized by unusual phylum proportions and extreme variability.


PLOS ONE | 2009

Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine

Marcus J. Claesson; Orla O'Sullivan; Qiong Wang; Janne Nikkilä; Julian Roberto Marchesi; Hauke Smidt; Willem M. de Vos; R. Paul Ross; Paul W. O'Toole

Background Variations in the composition of the human intestinal microbiota are linked to diverse health conditions. High-throughput molecular technologies have recently elucidated microbial community structure at much higher resolution than was previously possible. Here we compare two such methods, pyrosequencing and a phylogenetic array, and evaluate classifications based on two variable 16S rRNA gene regions. Methods and Findings Over 1.75 million amplicon sequences were generated from the V4 and V6 regions of 16S rRNA genes in bacterial DNA extracted from four fecal samples of elderly individuals. The phylotype richness, for individual samples, was 1,400–1,800 for V4 reads and 12,500 for V6 reads, and 5,200 unique phylotypes when combining V4 reads from all samples. The RDP-classifier was more efficient for the V4 than for the far less conserved and shorter V6 region, but differences in community structure also affected efficiency. Even when analyzing only 20% of the reads, the majority of the microbial diversity was captured in two samples tested. DNA from the four samples was hybridized against the Human Intestinal Tract (HIT) Chip, a phylogenetic microarray for community profiling. Comparison of clustering of genus counts from pyrosequencing and HITChip data revealed highly similar profiles. Furthermore, correlations of sequence abundance and hybridization signal intensities were very high for lower-order ranks, but lower at family-level, which was probably due to ambiguous taxonomic groupings. Conclusions The RDP-classifier consistently assigned most V4 sequences from human intestinal samples down to genus-level with good accuracy and speed. This is the deepest sequencing of single gastrointestinal samples reported to date, but microbial richness levels have still not leveled out. A majority of these diversities can also be captured with five times lower sampling-depth. HITChip hybridizations and resulting community profiles correlate well with pyrosequencing-based compositions, especially for lower-order ranks, indicating high robustness of both approaches. However, incompatible grouping schemes make exact comparison difficult.


Nucleic Acids Research | 2010

Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions

Marcus J. Claesson; Qiong Wang; Orla O'Sullivan; Rachel Greene-Diniz; James R. Cole; R. Paul Ross; Paul W. O'Toole

High-throughput molecular technologies can profile microbial communities at high resolution even in complex environments like the intestinal microbiota. Recent improvements in next-generation sequencing technologies allow for even finer resolution. We compared phylogenetic profiling of both longer (454 Titanium) sequence reads with shorter, but more numerous, paired-end reads (Illumina). For both approaches, we targeted six tandem combinations of 16S rRNA gene variable regions, in microbial DNA extracted from a human faecal sample, in order to investigate their limitations and potentials. In silico evaluations predicted that the V3/V4 and V4/V5 regions would provide the highest classification accuracies for both technologies. However, experimental sequencing of the V3/V4 region revealed significant amplification bias compared to the other regions, emphasising the necessity for experimental validation of primer pairs. The latest developments of 454 and Illumina technologies offered higher resolution compared to their previous versions, and showed relative consistency with each other. However, the majority of the Illumina reads could not be classified down to genus level due to their shorter length and higher error rates beyond 60 nt. Nonetheless, with improved quality and longer reads, the far greater coverage of Illumina promises unparalleled insights into highly diverse and complex environments such as the human gut.


Gut | 2012

An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota

Ian B. Jeffery; Paul W. O'Toole; Lena Öhman; Marcus J. Claesson; Jennifer Deane; Eamonn M. M. Quigley; Magnus Simren

Background and aims Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder that may be triggered by enteric pathogens and has also been linked to alterations in the microbiota and the host immune response. The authors performed a detailed analysis of the faecal microbiota in IBS and control subjects and correlated the findings with key clinical and physiological parameters. Design The authors used pyrosequencing to determine faecal microbiota composition in 37 IBS patients (mean age 37 years; 26 female subjects; 15 diarrhoea-predominant IBS, 10 constipation-predominant IBS and 12 alternating-type IBS) and 20 age- and gender-matched controls. Gastrointestinal and psychological symptom severity and quality of life were evaluated with validated questionnaires and colonic transit time and rectal sensitivity were measured. Results Associations detected between microbiota composition and clinical or physiological phenotypes included microbial signatures associated with colonic transit and levels of clinically significant depression in the disease. Clustering by microbiota composition revealed subgroups of IBS patients, one of which (n=15) showed normal-like microbiota composition compared with healthy controls. The other IBS samples (n=22) were defined by large microbiota-wide changes characterised by an increase of Firmicutes-associated taxa and a depletion of Bacteroidetes-related taxa. Conclusions Detailed microbiota analysis of a well-characterised cohort of IBS patients identified several clear associations with clinical data and a distinct subset of IBS patients with alterations in their microbiota that did not correspond to IBS subtypes, as defined by the Rome II criteria.


PLOS ONE | 2012

Diversity of Bifidobacteria within the Infant Gut Microbiota

Francesca Turroni; Clelia Peano; Daniel Antony Pass; Elena Foroni; Marco Severgnini; Marcus J. Claesson; Colm Kerr; Jonathan O'b Hourihane; Deirdre M. Murray; Fabio Fuligni; Miguel Gueimonde; Abelardo Margolles; Gianluca De Bellis; Paul W. O’Toole; Douwe van Sinderen; Julian Roberto Marchesi; Marco Ventura

Background The human gastrointestinal tract (GIT) represents one of the most densely populated microbial ecosystems studied to date. Although this microbial consortium has been recognized to have a crucial impact on human health, its precise composition is still subject to intense investigation. Among the GIT microbiota, bifidobacteria represent an important commensal group, being among the first microbial colonizers of the gut. However, the prevalence and diversity of members of the genus Bifidobacterium in the infant intestinal microbiota has not yet been fully characterized, while some inconsistencies exist in literature regarding the abundance of this genus. Methods/Principal Findings In the current report, we assessed the complexity of the infant intestinal bifidobacterial population by analysis of pyrosequencing data of PCR amplicons derived from two hypervariable regions of the 16 S rRNA gene. Eleven faecal samples were collected from healthy infants of different geographical origins (Italy, Spain or Ireland), feeding type (breast milk or formula) and mode of delivery (vaginal or caesarean delivery), while in four cases, faecal samples of corresponding mothers were also analyzed. Conclusions In contrast to several previously published culture-independent studies, our analysis revealed a predominance of bifidobacteria in the infant gut as well as a profile of co-occurrence of bifidobacterial species in the infant’s intestine.


Nature Reviews Microbiology | 2009

Genome-scale analyses of health-promoting bacteria: probiogenomics

Marco Ventura; Sarah O'Flaherty; Marcus J. Claesson; Francesca Turroni; Todd R. Klaenhammer; Douwe van Sinderen; Paul W. O'Toole

The human body is colonized by an enormous population of bacteria (microbiota) that provides the host with coding capacity and metabolic activities. Among the human gut microbiota are health-promoting indigenous species (probiotic bacteria) that are commonly consumed as live dietary supplements. Recent genomics-based studies (probiogenomics) are starting to provide insights into how probiotic bacteria sense and adapt to the gastrointestinal tract environment. In this Review, we discuss the application of probiogenomics in the elucidation of the molecular basis of probiosis using the well-recognized model probiotic bacteria genera Bifidobacterium and Lactobacillus as examples.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor

Mary O’Connell Motherway; Aldert Zomer; Sinead C. Leahy; Justus Reunanen; Francesca Bottacini; Marcus J. Claesson; Frances O'Brien; Kiera Flynn; Pat G. Casey; José Antonio Moreno Muñoz; Breda Kearney; Aileen Houston; Caitlin O'Mahony; Des Higgins; Fergus Shanahan; Airi Palva; Willem M. de Vos; Gerald F. Fitzgerald; Marco Ventura; Paul W. O'Toole; Douwe van Sinderen

Development of the human gut microbiota commences at birth, with bifidobacteria being among the first colonizers of the sterile newborn gastrointestinal tract. To date, the genetic basis of Bifidobacterium colonization and persistence remains poorly understood. Transcriptome analysis of the Bifidobacterium breve UCC2003 2.42-Mb genome in a murine colonization model revealed differential expression of a type IVb tight adherence (Tad) pilus-encoding gene cluster designated “tad2003.” Mutational analysis demonstrated that the tad2003 gene cluster is essential for efficient in vivo murine gut colonization, and immunogold transmission electron microscopy confirmed the presence of Tad pili at the poles of B. breve UCC2003 cells. Conservation of the Tad pilus-encoding locus among other B. breve strains and among sequenced Bifidobacterium genomes supports the notion of a ubiquitous pili-mediated host colonization and persistence mechanism for bifidobacteria.


PLOS Genetics | 2009

The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity

Marco Ventura; Francesca Turroni; Aldert Zomer; Elena Foroni; Vanessa Giubellini; Francesca Bottacini; Carlos Canchaya; Marcus J. Claesson; Fei He; Maria Mantzourani; Laura Mulas; Alberto Ferrarini; Beile Gao; Massimo Delledonne; Bernard Henrissat; Pedro M. Coutinho; Marco R. Oggioni; Radhey S. Gupta; Ziding Zhang; David Beighton; Gerald F. Fitzgerald; Paul W. O'Toole; Douwe van Sinderen

Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria). However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from opportunistic pathogens.


Translational Psychiatry | 2016

Regulation of prefrontal cortex myelination by the microbiota

Alan E. Hoban; Roman M. Stilling; Feargal J. Ryan; Fergus Shanahan; Timothy G. Dinan; Marcus J. Claesson; Gerard Clarke; John F. Cryan

The prefrontal cortex (PFC) is a key region implicated in a range of neuropsychiatric disorders such as depression, schizophrenia and autism. In parallel, the role of the gut microbiota in contributing to these disorders is emerging. Germ-free (GF) animals, microbiota-deficient throughout life, have been instrumental in elucidating the role of the microbiota in many aspects of physiology, especially the role of the microbiota in anxiety-related behaviours, impaired social cognition and stress responsivity. Here we aim to further elucidate the mechanisms of the microbial influence by investigating changes in the homeostatic regulation of neuronal transcription of GF mice within the PFC using a genome-wide transcriptome profiling approach. Our results reveal a marked, concerted upregulation of genes linked to myelination and myelin plasticity. This coincided with upregulation of neural activity-induced pathways, potentially driving myelin plasticity. Subsequent investigation at the ultrastructural level demonstrated the presence of hypermyelinated axons within the PFC of GF mice. Notably, these changes in myelin and activity-related gene expression could be reversed by colonization with a conventional microbiota following weaning. In summary, we believe we demonstrate for the first time that the microbiome is necessary for appropriate and dynamic regulation of myelin-related genes with clear implications for cortical myelination at an ultrastructural level. The microbiota is therefore a potential therapeutic target for psychiatric disorders involving dynamic myelination in the PFC.

Collaboration


Dive into the Marcus J. Claesson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fergus Shanahan

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Paul Ross

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge