Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus J. Kitchen is active.

Publication


Featured researches published by Marcus J. Kitchen.


The FASEB Journal | 2007

Imaging lung aeration and lung liquid clearance at birth

Stuart B. Hooper; Marcus J. Kitchen; Megan J. Wallace; Naoto Yagi; K Uesugi; Michael Morgan; C.J. Hall; Karen Kit Wan Siu; Ivan Williams; Melissa L. Siew; Sarah C. Irvine; Konstantin M. Pavlov; Robert A. Lewis

Aeration of the lung and the transition to air‐breathing at birth is fundamental to mammalian life and initiates major changes in cardiopulmonary physiology. However, the dynamics of this process and the factors involved are largely unknown, because it has not been possible to observe or measure lung aeration on a breath‐by‐breath basis. We have used the high contrast and spatial resolution of phase contrast X‐ray imaging to study lung aeration at birth in spontaneously breathing neonatal rabbits. As the liquid‐filled fetal lungs provide little absorption or phase contrast, they are not visible and only become visible as they aerate, allowing a detailed examination of this process. Pups were imaged live from birth to determine the timing and spatial pattern of lung aeration, and relative levels of lung aeration were measured from the images using a power spectral analysis. We report the first detailed observations and measurements of lung aeration, demonstrating its dependence on inspiratory activity and body position; dependent regions aerated at much slower rates. The air/liquid interface moved toward the distal airways only during inspiration, with little proximal movement during expiration, indicating that trans‐pulmonary pressures play an important role in airway liquid clearance at birth. Using these imaging techniques, the dynamics of lung aeration and the critical role it plays in regulating the physiological changes at birth can be fully explored.—Hooper S. B., Kitchen, M. J., Wallace, M. J., Yagi, N., Uesugi, K., Morgan M. J., Hall, C., Siu, K. K. W., Williams, I. M., Siew, M., Irvine, S. C., Pavlov, K., Lewis R. A. Imaging lung aeration and lung liquid clearance at birth. FASEB J. 21, 3329–3337 (2007)


Pediatric Research | 2009

Effect of Sustained Inflation Length on Establishing Functional Residual Capacity at Birth in Ventilated Premature Rabbits

Arjan B. te Pas; Melissa L. Siew; Megan J. Wallace; Marcus J. Kitchen; Andreas Fouras; Robert A. Lewis; Naoto Yagi; Kentaro Uesugi; Susan Donath; Peter G Davis; Colin J. Morley; Stuart B. Hooper

The effect of inflation length on lung aeration pattern, tidal volumes, and functional residual capacity (FRC) immediately after birth was investigated. Preterm rabbits (28 d), randomized into four groups, received a 1-, 5-, 10-, or 20-s inflation (SI) followed by ventilation with 5 cm H2O end-expiratory pressure. Gas volumes were measured by plethysmography and uniformity of lung aeration by phase contrast x-ray imaging for 7 min. The first inspiratory volume significantly (p < 0.001) increased with inflation duration from a median (IQR) of 0.2 (0.1–3.1) mL/kg for 1-s inflation to 23.4 (19.3–30.4) mL/kg for 20-s SI. The lung was uniformly aerated, and the FRC and tidal volume fully recruited after 20-s SI. A 10-s SI caused a higher FRC (p < 0.05) at 7 min, and a 20-s SI caused a higher FRC (p < 0.05) at 20 s and 7 min than a 1- or 5-s SI. The mean (SD) time for 90% of the lung to aerate was 14.0 (4.1) s using 35 cm H2O peak inflation pressure. In these rabbits, 10- and 20-s SI increased the inspiratory volume and produced a greater FRC, and a 20-s SI uniformly aerated the lung before ventilation started.


Physics in Medicine and Biology | 2004

On the origin of speckle in x-ray phase contrast images of lung tissue

Marcus J. Kitchen; David M. Paganin; Robert A. Lewis; Naoto Yagi; Kentaro Uesugi; S T Mudie

Phase contrast x-ray imaging of small animal lungs reveals a speckled intensity pattern not seen in other tissues, making the lungs highly visible in comparison to other organs. Although bearing a superficial resemblance to alveoli, the cause of this speckle has not been established. With a view to determining the mechanism for the formation of speckle, this paper details the results of propagation-based phase contrast experiments performed on mice lungs, together with packed glass microspheres used to emulate lung tissue. These experimental studies are compared to numerical simulations, based on wave propagation techniques. We find that speckle arises from focusing effects, with multiple alveoli acting as aberrated compound refractive lenses. Both experiments and modelling suggest that this speckle-formation phenomenon may lead to better screening methods for human lungs than conventional radiography.


Journal of Applied Physiology | 2009

Positive end-expiratory pressure enhances development of a functional residual capacity in preterm rabbits ventilated from birth

Melissa L. Siew; Arjan B. te Pas; Megan J. Wallace; Marcus J. Kitchen; Robert A. Lewis; Andreas Fouras; Colin J. Morley; Peter G Davis; Naoto Yagi; Kentaro Uesugi; Stuart B. Hooper

The factors regulating lung aeration and the initiation of pulmonary gas exchange at birth are largely unknown, particularly in infants born very preterm. As hydrostatic pressure gradients may play a role, we have examined the effect of a positive end-expiratory pressure (PEEP) on the spatial and temporal pattern of lung aeration in preterm rabbit pups mechanically ventilated from birth using simultaneous phase-contrast X-ray imaging and plethysmography. Preterm rabbit pups were delivered by caesarean section at 28 days of gestational age, anesthetized, intubated, and placed within a water-filled plethysmograph (head out). Pups were imaged as they were mechanically ventilated from birth with a PEEP of either 0 cmH(2)O or 5 cmH(2)O. The peak inflation pressure was held constant at 35 cmH(2)O. Without PEEP, gas only entered into the distal airways during inflation. The distal airways collapsed during expiration, and, as a result, the functional residual capacity (FRC) did not increase above the lungs anatomic dead space volume (2.5 +/- 0.8 ml/kg). In contrast, ventilation with 5-cmH(2)O PEEP gradually increased aeration of the distal airways, which did not collapse at end expiration. The FRC achieved in pups ventilated with PEEP (19.9 +/- 3.2 ml/kg) was significantly greater than in pups ventilated without PEEP (-2.3 +/- 3.5 ml/kg). PEEP greatly facilitates aeration of the distal airways and the accumulation of FRC and prevents distal airway collapse at end expiration in very preterm rabbit pups mechanically ventilated from birth.


Physics in Medicine and Biology | 2005

Dynamic imaging of the lungs using x-ray phase contrast

Robert A. Lewis; Naoto Yagi; Marcus J. Kitchen; Michael Morgan; David M. Paganin; Karen Siu; Konstantin M. Pavlov; Ivan Williams; Kentaro Uesugi; Megan J. Wallace; C.J. Hall; J Whitley; Stuart B. Hooper

High quality real-time imaging of lungs in vivo presents considerable challenges. We demonstrate here that phase contrast x-ray imaging is capable of dynamically imaging the lungs. It retains many of the advantages of simple x-ray imaging, whilst also being able to map weakly absorbing soft tissues based on refractive index differences. Preliminary results reported herein show that this novel imaging technique can identify and locate airway liquid and allows lung aeration in newborn rabbit pups to be dynamically visualized.


Optics Express | 2010

2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance

Mario A. Beltran; David M. Paganin; K. Uesugi; Marcus J. Kitchen

A method of tomographic phase retrieval is developed for multi-material objects whose components each has a distinct complex refractive index. The phase-retrieval algorithm, based on the Transport-of-Intensity equation, utilizes propagation-based X-ray phase contrast images acquired at a single defocus distance for each tomographic projection. The method requires a priori knowledge of the complex refractive index for each material present in the sample, together with the total projected thickness of the object at each orientation. The requirement of only a single defocus distance per projection simplifies the experimental setup and imposes no additional dose compared to conventional tomography. The algorithm was implemented using phase contrast data acquired at the SPring-8 Synchrotron facility in Japan. The three-dimensional (3D) complex refractive index distribution of a multi-material test object was quantitatively reconstructed using a single X-ray phase-contrast image per projection. The technique is robust in the presence of noise, compared to conventional absorption based tomography.


Physics in Medicine and Biology | 2008

Dynamic measures of regional lung air volume using phase contrast x-ray imaging

Marcus J. Kitchen; Robert A. Lewis; Michael Morgan; Megan J. Wallace; Melissa L. Siew; Karen Siu; A Habib; Andreas Fouras; Naoto Yagi; K Uesugi; Stuart B. Hooper

Phase contrast x-ray imaging can provide detailed images of lung morphology with sufficient spatial resolution to observe the terminal airways (alveoli). We demonstrate that quantitative functional and anatomical imaging of lung ventilation can be achieved in vivo using two-dimensional phase contrast x-ray images with high contrast and spatial resolution (<100 microm) in near real time. Changes in lung air volume as small as 25 microL were calculated from the images of term and preterm rabbit pup lungs (n = 28) using a single-image phase retrieval algorithm. Comparisons with plethysmography and computed tomography showed that the technique provided an accurate and robust method of measuring total lung air volumes. Furthermore, regional ventilation was measured by partitioning the phase contrast images, which revealed differences in aeration for different ventilation strategies.


Journal of Applied Physiology | 2009

Inspiration regulates the rate and temporal pattern of lung liquid clearance and lung aeration at birth

Melissa L. Siew; Megan J. Wallace; Marcus J. Kitchen; Robert A. Lewis; Andreas Fouras; Arjan B. te Pas; Naoto Yagi; Kentaro Uesugi; Karen K. W. Siu; Stuart B. Hooper

At birth, the initiation of pulmonary gas exchange is dependent on air entry into the lungs, and recent evidence indicates that pressures generated by inspiration may be involved. We have used simultaneous plethysmography and phase-contrast X-ray imaging to investigate the contribution of inspiration and expiratory braking maneuvers (EBMs) to lung aeration and the formation of a functional residual capacity (FRC) after birth. Near-term rabbit pups (n = 26) were delivered by cesarean section, placed in a water plethysmograph, and imaged during the initiation of spontaneous breathing. Breath-by-breath changes in lung gas volumes were measured using plethysmography and visualized using phase-contrast X-ray imaging. Pups rapidly (1-5 breaths) generate a FRC (16.2 +/- 1.2 ml/kg) by inhaling a greater volume than they expire (by 2.9 +/- 0.4 ml.kg(-1).breath(-1) over the first 5 breaths). As a result, 94.8 +/- 1.4% of lung aeration occurred during inspiration over multiple breaths. The incidence of EBMs was rare early during lung aeration, with most (>80%) occurring after >80% of max FRC was achieved. Although EBMs were associated with an overall increase in FRC, 34.8 +/- 5.3% of EBMs were associated with a decrease in FRC. We conclude that lung aeration is predominantly achieved by inspiratory efforts and that EBMs help to maintain FRC following its formation.


Journal of Applied Physics | 2009

The past, present, and future of x-ray technology for in vivo imaging of function and form

Andreas Fouras; Marcus J. Kitchen; S. Dubsky; Robert A. Lewis; Stuart B. Hooper; Kerry Hourigan

Scientists and clinicians have a keen interest in studying not just the structure of physiological systems, but their motion also, or more generally their form and function. This paper focuses on the technologies that underpin in vivo measurements of form and function of the human body for both research and medical treatment. A concise literature review of x-ray imaging, ultrasonography, magnetic resonance imaging, radionuclide imaging, laser Doppler velocimetry, and particle image velocimetry is presented. Additionally, a more detailed review of in vivo x-ray imaging is presented. Finally, two techniques, which the authors believe are representative of the present and future of in vivo x-ray imaging techniques, are presented.


Clinical and Experimental Pharmacology and Physiology | 2009

IMAGING LUNG AERATION AND LUNG LIQUID CLEARANCE AT BIRTH USING PHASE CONTRAST X‐RAY IMAGING

Stuart B. Hooper; Marcus J. Kitchen; Melissa L. Siew; Robert A. Lewis; Andreas Fouras; Arjan B. te Pas; Karen Kit Wan Siu; Naoto Yagi; Kentaro Uesugi; Megan J. Wallace

1 The transition to extra‐uterine life at birth is critically dependent on airway liquid clearance to allow the entry of air and the onset of gaseous ventilation. We have used phase contrast X‐ray imaging to identify factors that regulate lung aeration at birth in spontaneously breathing term and mechanically ventilated preterm rabbit pups. 2 Phase contrast X‐ray imaging exploits the difference in refractive index between air and water to enhance image contrast, enabling the smallest air‐filled structures of the lung (alveoli; < 100 µm) to be resolved. Using this technique, the lungs become visible as they aerate, allowing the air–liquid interface to be observed as it moves distally during lung aeration. 3 Spontaneously breathing term rabbit pups rapidly aerate their lungs, with most fully recruiting their functional residual capacity (FRC) within the first few breaths. The increase in FRC occurs mainly during individual breaths, demonstrating that airway liquid clearance and lung aeration is closely associated with inspiration. We suggest that transpulmonary pressures generated by inspiration provide a hydrostatic pressure gradient for the movement of water out of the airways and into the surrounding lung tissue after birth. 4 In mechanically ventilated preterm pups, lung aeration is closely associated with lung inflation and a positive end‐expiratory pressure is required to generate and maintain FRC after birth. 5 In summary, phase contrast X‐ray imaging can image the air‐filled lung with high temporal and spatial resolution and is ideal for identifying factors that regulate lung aeration at birth in both spontaneously breathing term and mechanically ventilated preterm neonates.

Collaboration


Dive into the Marcus J. Kitchen's collaboration.

Top Co-Authors

Avatar

Stuart B. Hooper

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Robert A. Lewis

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Megan J. Wallace

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoto Yagi

Kansai Medical University

View shared research outputs
Top Co-Authors

Avatar

Kentaro Uesugi

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Arjan B. te Pas

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge