Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus J. Moeller is active.

Publication


Featured researches published by Marcus J. Moeller.


Journal of The American Society of Nephrology | 2009

Recruitment of Podocytes from Glomerular Parietal Epithelial Cells

Daniel Appel; David B. Kershaw; Bart Smeets; Gang Yuan; Astrid Fuss; Björn C. Frye; Marlies Elger; Wilhelm Kriz; Jürgen Floege; Marcus J. Moeller

Loss of a critical number of podocytes from the glomerular tuft leads to glomerulosclerosis. Even in health, some podocytes are lost into the urine. Because podocytes themselves cannot regenerate, we postulated that glomerular parietal epithelial cells (PECs), which proliferate throughout life and adjoin podocytes, may migrate to the glomerular tuft and differentiate into podocytes. Here, we describe transitional cells at the glomerular vascular stalk that exhibit features of both PECs and podocytes. Metabolic labeling in juvenile rats suggested that PECs migrate to become podocytes. To prove this, we generated triple-transgenic mice that allowed specific and irreversible labeling of PECs upon administration of doxycycline. PECs were followed in juvenile mice beginning from either postnatal day 5 or after nephrogenesis had ceased at postnatal day 10. In both cases, the number of genetically labeled cells increased over time. All genetically labeled cells coexpressed podocyte marker proteins. In conclusion, we demonstrate for the first time recruitment of podocytes from PECs in juvenile mice. Unraveling the mechanisms of PEC recruitment onto the glomerular tuft may lead to novel therapeutic approaches to renal injury.


Journal of The American Society of Nephrology | 2009

Tracing the Origin of Glomerular Extracapillary Lesions from Parietal Epithelial Cells

Bart Smeets; Sandra Uhlig; Astrid Fuss; Fieke Mooren; Jack F.M. Wetzels; Jüurgen Floege; Marcus J. Moeller

Cellular lesions form in Bowmans space in both crescentic glomerulonephritis and collapsing glomerulopathy. The pathomechanism and origin of the proliferating cells in these lesions are unknown. In this study, we examined proliferating cells by lineage tracing of either podocytes or parietal epithelial cells (PECs) in the nephrotoxic nephritis model of inflammatory crescentic glomerulonephritis. In addition, we traced the fate of genetically labeled PECs in the Thy-1.1 transgenic mouse model of collapsing glomerulopathy. In both models, cellular bridges composed of PECs were observed between Bowmans capsule and the glomerular tuft. Genetically labeled PECs also populated larger, more advanced cellular lesions. In these lesions, we detected de novo expression of CD44 in activated PECs. In contrast, we rarely identified genetically labeled podocytes within the cellular lesions of crescentic glomerulonephritis. In conclusion, PECs constitute the majority of cells that compose early extracapillary proliferative lesions in both crescentic glomerulonephritis and collapsing glomerulopathy, suggesting similar pathomechanisms in both diseases.


Journal of The American Society of Nephrology | 2006

Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis.

Chiraz El-Aouni; Nadja Herbach; Simone M. Blattner; Anna Henger; Maria Pia Rastaldi; George Jarad; Jeffrey H. Miner; Marcus J. Moeller; René St-Arnaud; Shoukat Dedhar; Lawrence B. Holzman; Ruediger Wanke; Matthias Kretzler

Alterations in glomerular podocyte cell-cell and cell-matrix contacts are key events in progressive glomerular failure. Integrin-linked kinase (ILK) has been implicated in podocyte cell-matrix interaction and is induced in proteinuria. For evaluation of ILK function in vivo, mice with a Cre-mediated podocyte-specific ILK inactivation were generated. These mice seemed normal at birth but developed progressive focal segmental glomerulosclerosis and died in terminal renal failure. The first ultrastructural lesions that are seen at onset of albuminuria are glomerular basement membrane (GBM) alterations with a significant increase in true harmonic mean GBM thickness. Podocyte foot process effacement and loss of slit diaphragm followed with progression to unselective proteinuria. No significant reduction of slit membrane molecules (podocin and nephrin), key GBM components (fibronectin, laminins, and collagen IV isoforms), or podocyte integrins could be observed at onset of proteinuria. However, alpha3-integrins were relocalized into a granular pattern along the GBM, consistent with altered integrin-mediated matrix assembly in ILK-deficient podocytes. As the increased GBM thickness precedes structural podocyte lesions and key components of the GBM were expressed at comparable levels to controls, these data suggest an essential role of ILK for the close interconnection of GBM structure and podocyte function.


Journal of The American Society of Nephrology | 2011

Parietal Epithelial Cells Participate in the Formation of Sclerotic Lesions in Focal Segmental Glomerulosclerosis

Bart Smeets; Christoph Kuppe; Eva Maria Sicking; Astrid Fuss; Peggy Jirak; Toin H. van Kuppevelt; Karlhans Endlich; Jack F.M. Wetzels; Hermann Josef Gröne; Jürgen Floege; Marcus J. Moeller

The pathogenesis of the development of sclerotic lesions in focal segmental glomerulosclerosis (FSGS) remains unknown. Here, we selectively tagged podocytes or parietal epithelial cells (PECs) to determine whether PECs contribute to sclerosis. In three distinct models of FSGS (5/6-nephrectomy + DOCA-salt; the murine transgenic chronic Thy1.1 model; or the MWF rat) and in human biopsies, the primary injury to induce FSGS associated with focal activation of PECs and the formation of cellular adhesions to the capillary tuft. From this entry site, activated PECs invaded the affected segment of the glomerular tuft and deposited extracellular matrix. Within the affected segment, podocytes were lost and mesangial sclerosis developed within the endocapillary compartment. In conclusion, these results demonstrate that PECs contribute to the development and progression of the sclerotic lesions that define FSGS, but this pathogenesis may be relevant to all etiologies of glomerulosclerosis.


The Journal of Pathology | 2013

Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration.

Bart Smeets; Peter Boor; Henry Dijkman; Shagun V Sharma; Peggy Jirak; Fieke Mooren; Katja Berger; Jörg Bornemann; Irwin H. Gelman; Jürgen Floege; Johan van der Vlag; Jack F.M. Wetzels; Marcus J. Moeller

Regeneration of injured tubular cells occurs after acute tubular necrosis primarily from intrinsic renal cells. This may occur from a pre‐existing intratubular stem/progenitor cell population or from any surviving proximal tubular cell. In this study, we characterize a CD24‐, CD133‐, and vimentin‐positive subpopulation of cells scattered throughout the proximal tubule in normal human kidney. Compared to adjacent ‘normal’ proximal tubular cells, these CD24‐positive cells contained less cytoplasm, fewer mitochondria, and no brush border. In addition, 49 marker proteins are described that are expressed within the proximal tubules in a similar scattered pattern. For eight of these markers, we confirmed co‐localization with CD24. In human biopsies of patients with acute tubular necrosis (ATN), the number of CD24‐positive tubular cells was increased. In both normal human kidneys and the ATN biopsies, around 85% of proliferating cells were CD24‐positive – indicating that this cell population participates in tubular regeneration. In healthy rat kidneys, the novel cell subpopulation was absent. However, upon unilateral ureteral obstruction (UUO), the novel cell population was detected in significant amounts in the injured kidney. In summary, in human renal biopsies, the CD24‐positive cells represent tubular cells with a deviant phenotype, characterized by a distinct morphology and marker expression. After acute tubular injury, these cells become more numerous. In healthy rat kidneys, these cells are not detectable, whereas after UUO, they appeared de novo – arguing against the notion that these cells represent a pre‐existing progenitor cell population. Our data indicate rather that these cells represent transiently dedifferentiated tubular cells involved in regeneration. Copyright


Proceedings of the National Academy of Sciences of the United States of America | 2009

Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development

Kassiani Skouloudaki; Michael Puetz; Matias Simons; Jean-Remy Courbard; Christopher Boehlke; Björn Hartleben; Christina Engel; Marcus J. Moeller; Christoph Englert; Frank Bollig; Tobias Schäfer; Marek Mlodzik; Tobias B. Huber; E. Wolfgang Kuehn; Emily Kim; Albrecht Kramer-Zucker; Gerd Walz

Spatial organization of cells and their appendages is controlled by the planar cell polarity pathway, a signaling cascade initiated by the protocadherin Fat in Drosophila. Vertebrates express 4 Fat molecules, Fat1–4. We found that depletion of Fat1 caused cyst formation in the zebrafish pronephros. Knockdown of the PDZ domain containing the adaptor protein Scribble intensified the cyst-promoting phenotype of Fat1 depletion, suggesting that Fat1 and Scribble act in overlapping signaling cascades during zebrafish pronephros development. Supporting the genetic interaction with Fat1, Scribble recognized the PDZ-binding site of Fat1. Depletion of Yes-associated protein 1 (YAP1), a transcriptional co-activator inhibited by Hippo signaling, ameliorated the cyst formation in Fat1-deficient zebrafish, whereas Scribble inhibited the YAP1-induced cyst formation. Thus, reduced Hippo signaling and subsequent YAP1 disinhibition seem to play a role in the development of pronephric cysts after depletion of Fat1 or Scribble. We hypothesize that Hippo signaling is required for normal pronephros development in zebrafish and that Scribble is a candidate link between Fat and the Hippo signaling cascade in vertebrates.


Journal of The American Society of Nephrology | 2014

Unraveling the Role of Podocyte Turnover in Glomerular Aging and Injury

Nicola Wanner; Björn Hartleben; Nadja Herbach; Markus Goedel; Natalie Stickel; Robert Zeiser; Gerd Walz; Marcus J. Moeller; Florian Grahammer; Tobias B. Huber

Podocyte loss is a major determinant of progressive CKD. Although recent studies showed that a subset of parietal epithelial cells can serve as podocyte progenitors, the role of podocyte turnover and regeneration in repair, aging, and nephron loss remains unclear. Here, we combined genetic fate mapping with highly efficient podocyte isolation protocols to precisely quantify podocyte turnover and regeneration. We demonstrate that parietal epithelial cells can give rise to fully differentiated visceral epithelial cells indistinguishable from resident podocytes and that limited podocyte renewal occurs in a diphtheria toxin model of acute podocyte ablation. In contrast, the compensatory programs initiated in response to nephron loss evoke glomerular hypertrophy, but not de novo podocyte generation. In addition, no turnover of podocytes could be detected in aging mice under physiologic conditions. In the absence of podocyte replacement, characteristic features of aging mouse kidneys included progressive accumulation of oxidized proteins, deposits of protein aggregates, loss of podocytes, and glomerulosclerosis. In summary, quantitative investigation of podocyte regeneration in vivo provides novel insights into the mechanism and capacity of podocyte turnover and regeneration in mice. Our data reveal that podocyte generation is mainly confined to glomerular development and may occur after acute glomerular injury, but it fails to regenerate podocytes in aging kidneys or in response to nephron loss.


Diabetes | 2007

l-Carnosine, a Substrate of Carnosinase-1, Influences Glucose Metabolism

Sibylle Sauerhöfer; Gang Yuan; Gerald S. Braun; Martina Deinzer; Michael Neumaier; Norbert Gretz; Jürgen Floege; Wilhelm Kriz; Fokko J. van der Woude; Marcus J. Moeller

OBJECTIVE—Carnosinase 1 (CN1) is a secreted dipeptidase that hydrolyzes l-carnosine. Recently, we have identified an allelic variant of human CN1 (hCN1) that results in increased enzyme activity and is associated with susceptibility for diabetic nephropathy in human diabetic patients. We therefore hypothesized that l-carnosine in the serum represents a critical protective factor in diabetic patients. RESEARCH DESIGN AND METHODS—l-carnosine serum levels were manipulated in db/db mice, a model of type 2 diabetes. In a transgenic approach, hCN1 cDNA was expressed under the control of a liver-specific promoter in db/db mice, mimicking the expression pattern of hCN1 in humans. RESULTS—Fasting plasma glucose as well as A1C levels rose significantly earlier and remained higher in transgenic animals throughout life. Body weights were reduced as a result of significant glucosuria. In an opposite approach, nontransgenic db/db mice were supplemented with l-carnosine. In these latter mice, diabetes manifested significantly later and milder. In agreement with the above data, serum fasting insulin levels were low in the transgenic mice and elevated by l-carnosine feeding. Insulin resistance and insulin secretion were not significantly affected by l-carnosine serum levels. Instead, a significant correlation of l-carnosine levels with β-cell mass was observed. CONCLUSIONS—hCN1-dependent susceptibility to diabetic nephropathy may at least in part be mediated by altered glucose metabolism in type 2 diabetic patients.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Origin of regenerating tubular cells after acute kidney injury

Katja Berger; Jörg-Martin Bangen; Linda Hammerich; Christian Liedtke; Jürgen Floege; Bart Smeets; Marcus J. Moeller

Significance Acute kidney injury (AKI) is a common and significant clinical problem for which no specific therapy has been developed. There is controversy about the origin of the regenerating tubular cells after AKI. Attention has recently focused on “scattered tubular cells” (STCs), which are by far the best candidate cells for the postulated fixed progenitor population of kidney tubular cells. In the present study, we clarify this question by genetic cell fate labeling using a unique transgenic mouse. We show that STCs may arise from any tubular cell and that these cells do not represent fixed progenitor cells. Rather, upon different injuries, proximal tubular cells transiently acquire the STC phenotype, which we show to have reparative characteristics. Acute kidney injury (AKI) is associated with high morbidity and mortality. Recent genetic fate mapping studies demonstrated that recovery from AKI occurs from intrinsic tubular cells. It is unresolved whether these intrinsic cells (so-called “scattered tubular cells”) represent fixed progenitor cells or whether recovery involves any surviving tubular cell. Here, we show that the doxycycline-inducible parietal epithelial cell (PEC)–specific PEC–reverse-tetracycline transactivator (rtTA) transgenic mouse also efficiently labels the scattered tubular cell population. Proximal tubular cells labeled by the PEC–rtTA mouse coexpressed markers for scattered tubular cells (kidney injury molecule 1, annexin A3, src-suppressed C-kinase substrate, and CD44) and showed a higher proliferative index. The PEC–rtTA mouse labeled more tubular cells upon different tubular injuries but was independent of cellular proliferation as determined in physiological growth of the kidney. To resolve whether scattered tubular cells are fixed progenitors, cells were irreversibly labeled before ischemia reperfusion injury (genetic cell fate mapping). During recovery, the frequency of labeled tubular cells remained constant, arguing against a fixed progenitor population. In contrast, when genetic labeling was induced during ischemic injury and subsequent recovery, the number of labeled cells increased significantly, indicating that scattered tubular cells arise from any surviving tubular cell. In summary, scattered tubular cells do not represent a fixed progenitor population but rather a phenotype that can be adopted by almost any proximal tubular cell upon injury. Understanding and modulating these phenotypic changes using the PEC–rtTA mouse may lead to more specific therapies in AKI.


American Journal of Pathology | 2009

Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease.

Samy Hakroush; Marcus J. Moeller; Franziska Theilig; Brigitte Kaissling; Tjeerd P. Sijmonsma; Manfred Jugold; Ann L. Akeson; Milena Traykova-Brauch; Hiltraud Hosser; Brunhilde Hähnel; Hermann Josef Gröne; Robert Koesters; Wilhelm Kriz

The role of vascular endothelial growth factor (VEGF) in renal fibrosis, tubular cyst formation, and glomerular diseases is incompletely understood. We studied a new conditional transgenic mouse system [Pax8-rtTA/(tetO)(7)VEGF], which allows increased tubular VEGF production in adult mice. The following pathology was observed. The interstitial changes consisted of a ubiquitous proliferation of peritubular capillaries and fibroblasts, followed by deposition of matrix leading to a unique kind of fibrosis, ie, healthy tubules amid a capillary-rich dense fibrotic tissue. In tubular segments with high expression of VEGF, cysts developed that were surrounded by a dense network of peritubular capillaries. The glomerular effects consisted of a proliferative enlargement of glomerular capillaries, followed by mesangial proliferation. This resulted in enlarged glomeruli with loss of the characteristic lobular structure. Capillaries became randomly embedded into mesangial nodules, losing their filtration surface. Serum VEGF levels were increased, whereas endogenous VEGF production by podocytes was down-regulated. Taken together, this study shows that systemic VEGF interferes with the intraglomerular cross-talk between podocytes and the endocapillary compartment. It suppresses VEGF secretion by podocytes but cannot compensate for the deficit. VEGF from podocytes induces a directional effect, attracting the capillaries to the lobular surface, a relevant mechanism to optimize filtration surface. Systemic VEGF lacks this effect, leading to severe deterioration in glomerular architecture, similar to that seen in diabetic nephropathy.

Collaboration


Dive into the Marcus J. Moeller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Smeets

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hermann Josef Gröne

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Peter Boor

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack F.M. Wetzels

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Astrid Fuss

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge