Marcus K. Dymond
University of Brighton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcus K. Dymond.
Langmuir | 2008
Marcus K. Dymond; George S. Attard
Recently we proposed that the antineoplastic properties observed in vivo for alkyl-lysophospholipid and alkylphosphocholine analogues are a direct consequence of the reduction of membrane stored elastic stress induced by these amphiphiles. Here we report similar behavior for a wide range of cationic surfactant analogues. Our systematic structure-activity studies show that the cytotoxic properties of cationic surfactants follow the same pattern of activity we observed previously for alkyl-lysophospholipid analogues, indicating a common mechanism of action that is consistent with the theory that these amphiphiles reduce membrane stored elastic stress. We note that several of the cationic surfactant compounds we have evaluated are also potent antibacterial and antifungal agents. The similarity of structure-activity relationships for cationic surfactants against microorganisms and those we have observed in eukaryotic cell lines leads us to suggest the possibility that the antibacterial and antifungal properties of cationic surfactants may also be due to modulation of membrane stored elastic stress.
Faraday Discussions | 2013
Charlotte V. Hague; Anthony D. Postle; George S. Attard; Marcus K. Dymond
One of the most developed theories of phospholipid homeostasis is the intrinsic curvature hypothesis, which, in broad terms, postulates that cells regulate their lipid composition so as to keep constant the membrane stored curvature elastic energy. The implication of this hypothesis is that lipid composition is determined by a ratio control function consisting of the weighted sum of concentrations of type II lipids in the numerator and the weighted sum of concentrations of Type 0 lipids in the denominator. In previous work we used a data-driven approach, based on lipidomic data from asynchronous cell cultures, to determine a criterion that allows the different lipid species to be assigned to the set of type 0 or of type II lipids, and hence construct a ratio control function that serves as a proxy for the lipid contribution to total membrane stored curvature elastic energy in vivo. Here we apply the curvature elastic energy proxy to the analysis of lipid composition data from synchronous HeLa cells as they traverse the cell cycle. Our analysis suggests HeLa cells modify their membrane stored elastic energy through the cell cycle. In S-phase type 0 lipids are the most abundant, whilst in G2 type II lipids are most abundant. Changes in our proxy for membrane stored elastic energy correlate with membrane curvature dependent processes in the HeLa cell around division, providing some insights into the interplay between the individual lipid and protein contributions to membrane free energy.
Journal of the Royal Society Interface | 2008
Marcus K. Dymond; George S. Attard; Anthony D. Postle
The alkyllysophospholipid (ALP) analogues Mitelfosine and Edelfosine are anticancer drugs whose mode of action is still the subject of debate. It is agreed that the primary interaction of these compounds is with cellular membranes. Furthermore, the membrane-associated protein CTP: phosphocholine cytidylyltransferase (CCT) has been proposed as the critical target. We present the evaluation of our hypothesis that ALP analogues disrupt membrane curvature elastic stress and inhibit membrane-associated protein activity (e.g. CCT), ultimately resulting in apoptosis. This hypothesis was tested by evaluating structure–activity relationships of ALPs from the literature. In addition we characterized the lipid typology, cytotoxicity and critical micelle concentration of novel ALP analogues that we synthesized. Overall we find the literature data and our experimental data provide excellent support for the hypothesis, which predicts that the most potent ALP analogues will be type I lipids.
Journal of the American Chemical Society | 2010
Camilla F. Black; Richard J. Wilson; Tommy Nylander; Marcus K. Dymond; George S. Attard
Recently, we reported that DNA associated with inverse hexagonal (H(II)) lyotropic liquid crystal phases of the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was actively transcribed by T7 RNA polymerase. Our findings suggested that key components of the transcription process, probably the T7 RNA polymerase and the DNA, remained associated with the monolithic H(II) phase throughout transcription. Here, we investigate the partitioning of DNA between an H(II) lyotropic liquid crystal phase and an isotropic supernatant phase in order to develop insights into the localization of DNA in liquid crystalline environments. Our results show that linear double stranded DNA (dsDNA) molecules partition spontaneously into monolithic preformed H(II) liquid crystal phases of DOPE. We propose that this process is driven by the increase in entropy due to the release of counterions from the DNA when it inserts into the aqueous pores of the H(II) phase.
Chemical Communications | 2008
Josephine Corsi; Marcus K. Dymond; Oscar Ces; Joscha Muck; Daniele Zink; George S. Attard
We report that a 4.3 kbp linearised T7 DNA plasmid is actively transcribed when it is dispersed in the hexagonal liquid crystalline phase of dioleoylphosphoethanolamine (DOPE).
Journal of the Royal Society Interface | 2012
Marcus K. Dymond; Charlotte V. Hague; Anthony D. Postle; George S. Attard
While it is widely accepted that the lipid composition of eukaryotic membranes is under homeostatic control, the mechanisms through which cells sense lipid composition are still the subject of debate. It has been postulated that membrane curvature elastic energy is the membrane property that is regulated by cells, and that lipid composition is maintained by a ratio control function derived from the concentrations of type II and type 0 lipids, weighted appropriately. We assess this proposal by seeking a signature of ratio control in quantified lipid composition data obtained by electrospray ionization mass spectrometry from over 40 independent asynchronous cell populations. Our approach revealed the existence of a universal ‘pivot’ lipid, which marks the boundary between type 0 lipids and type II lipids, and which is invariant between different cell types or cells grown under different conditions. The presence of such a pivot species is a distinctive signature of the operation in vivo, in human cell lines, of a control function that is consistent with the hypothesis that membrane elastic energy is homeostatically controlled.
Langmuir | 2014
Richard J. Gillams; Tommy Nylander; Tomás S. Plivelic; Marcus K. Dymond; George S. Attard
The addition of saturated fatty acids (FA) to phosphatidylcholine lipids (PC) that have saturated acyl chains has been shown to promote the formation of lyotropic liquid-crystalline phases with negative mean curvature. PC/FA mixtures may exhibit inverse bicontinuous cubic phases (Im3m, Pn3m) or inverse topology hexagonal phases (HII), depending on the length of the acyl chains/fatty acid. Here we report a detailed study of the phase behavior of binary mixtures of dioleoylphosphatidylcholine (DOPC)/oleic acid (OA) and dioleoylphosphatidylethanolamine (DOPE)/oleic acid at limiting hydration, constructed using small-angle X-ray diffraction (SAXD) data. The phase diagrams of both systems show a succession of phases with increasing negative mean curvature with increasing OA content. At high OA concentrations, we have observed the occurrence of an inverse micellar Fd3m phase in both systems. Hitherto, this phase had not been reported for phosphatidylethanolamine/fatty acid mixtures, and as such it highlights an additional route through which fatty acids may increase the propensity of bilayer lipid membranes to curve. We also propose a method that uses the temperature dependence of the lattice parameters of the HII phases to estimate the spontaneous radii of curvature (R0) of the binary mixtures and of the component lipids. Using this method, we calculated the R0 values of the complexes comprising one phospholipid molecule and two fatty acid molecules, which have been postulated to drive the formation of inverse phases in PL/FA mixtures. These are -1.8 nm (±0.4 nm) for DOPC(OA)2 and -1.1 nm (±0.1 nm) for DOPE(OA)2. R0 values estimated in this way allow the quantification of the contribution that different lipid species make to membrane curvature elastic properties and hence of their effect on the function of membrane-bound proteins.
Chemistry and Physics of Lipids | 2015
Marcus K. Dymond
One of the mostly widely cited theories of phospholipid homeostasis is the theory of homeoviscous adaptation (HVA). HVA states that cells maintain membrane order (frequently discussed in terms of membrane fluidity or viscosity) within tight conditions in response to environmental induced changes in membrane lipid composition. In this article we use data driven modelling to investigate membrane order, using methodology we previously developed to investigate another theory of phospholipid homeostasis, the intrinsic curvature hypothesis. A set of coarse-grain parameters emerge from our model which can be used to deconstruct the relative contribution of each component membrane phospholipid to net membrane order. Our results suggest, for the membranes in the mammalian cells we have studied, that a ratio control function can be used to model membrane order. Using asynchronous cell lines we quantify the relative contribution of around 130 lipid species to net membrane order, finding that around 16 of these phospholipid species have the greatest effect in vivo. Then using lipidomic data obtained from partially synchronised cultures of HeLa cells we are able to demonstrate that these same 16 lipid species drive the changes in membrane order observed around the cell cycle. Our findings in this study suggest, when compared with our previous work, that cells maintain both membrane order and membrane intrinsic curvature within tight conditions.
Journal of the Royal Society Interface | 2016
Marcus K. Dymond
Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4–7 × 10−12 N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo. These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids.
Chemistry and Physics of Lipids | 2011
Maria-Nefeli Tsaloglou; George S. Attard; Marcus K. Dymond
6-Phosphofructo-1-kinase (PFK-1), a major regulatory enzyme in the glycolysis pathway, is a cytoplasmic enzyme with complicated allosteric kinetics. Here we investigate the effects of lipids on the activity of PFK from Bacillus stearothermophilus (BsPFK), to determine whether BsPFK shares any of the membrane binding or lipid binding properties reported for some mammalian PFKs. Our results show that large unilamellar vesicles (LUVs) composed of either the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or of 1:1 (mole ratio) DOPC and the fatty acid, oleic acid (OA), cause a three-fold increase in V(max), depending on the lipid concentration and vesicle composition, but no change in K(m). Further studies show lipids do not reverse the allosteric inhibitory effects of phosphoenolpyruvate (PEP) on BsPFK. SDS/PAGE studies do not show significant binding of the BsPFK tetramer to the surface of the phospholipid vesicles, suggesting that modulation of catalytic activity is due to binding of lipid monomers. By simulating the kinetics of BsPFK interaction with vesicles and lipid monomers we conclude that the change in BsPFK catalytic activity with respect to lipid concentration is consistent with monomer abstraction from vesicles rather than direct uptake of lipid monomers from solution.