Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus Koch is active.

Publication


Featured researches published by Marcus Koch.


Journal of Mass Spectrometry | 2014

The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry.

Yuliya E. Silina; Marcus Koch; Dietrich A. Volmer

Fundamental parameters influencing the ion-producing efficiency of palladium nanostructures (nanoparticles [Pd-NP], nanoflowers, nanofilms) during laser irradiation were studied in this paper. The nanostructures were immobilized on the surface of different solid inorganic carrier materials (porous and mono-crystalline silicon, anodic porous aluminum oxide, glass and polished steel) by using classical galvanic deposition, electroless local deposition and sputtering. It was the goal of this study to investigate the influence of both the nanoparticular layer as well as the carrier material on ion production for selected analyte molecules. Our experiments demonstrated that the dimensions of the synthesized nanostructures, the thickness of the active layers, surface disorders, thermal conductivity and physically or chemically adsorbed water influenced signal intensities of analyte ions during surface-assisted laser desorption/ionization (SALDI) while no effects such as plasmon resonance, photoelectric effect or catalytic activity were expected to occur. Excellent LDI abilities were seen for Pd-NPs immobilized on steel, while Pd nanoflowers on porous silicon exhibited several disadvantages; viz, strong memory effects, dependency of the analytical signal on amount of physically and chemically adsorbed water inside porous carrier, reduced SALDI activity from unstable connections between Pd and semiconductor material, decrease of the melting point of pure silicon after Pd immobilization and resulting strong laser ablation of metal/semiconductor complex, as well as significantly changed surface morphology after laser irradiation. The analytical performance of Pd-NP/steel was further improved by applying a hydrophobic coating to the steel surface before galvanic deposition. This procedure increased the distance between Pd-NPs, thus reducing thermal stress upon LDI; it simultaneously decreased spot sizes of deposited sample solutions.


Journal of Mass Spectrometry | 2015

Influence of surface melting effects and availability of reagent ions on LDI-MS efficiency after UV laser irradiation of Pd nanostructures.

Yuliya E. Silina; Marcus Koch; Dietrich A. Volmer

In this study, the influence of surface morphology, reagent ions and surface restructuring effects on atmospheric pressure laser desorption/ionization (LDI) for small molecules after laser irradiation of palladium self-assembled nanoparticular (Pd-NP) structures has been systematically studied. The dominant role of surface morphology during the LDI process, which was previously shown for silicon-based substrates, has not been investigated for metal-based substrates before. In our experiments, we demonstrated that both the presence of reagent ions and surface reorganization effects--in particular, melting--during laser irradiation was required for LDI activity of the substrate. The synthesized Pd nanostructures with diameters ranging from 60 to 180 nm started to melt at similar temperatures, viz. 890-898 K. These materials exhibited different LDI efficiencies, however, with Pd-NP materials being the most effective surface in our experiments. Pd nanostructures of diameters >400-800 nm started to melt at higher temperatures, >1000 K, making such targets more resistant to laser irradiation, with subsequent loss of LDI activity. Our data demonstrated that both melting of the surface structures and the presence of reagent ions were essential for efficient LDI of the investigated low molecular weight compounds. This dependence of LDI on melting points was exploited further to improve the performance of Pd-NP-based sampling targets. For example, adding sodium hypophosphite as reducing agent to Pd electrolyte solutions during synthesis lowered the melting points of the Pd-NP materials and subsequently gave reduced laser fluence requirements for LDI.


RSC Advances | 2016

Plant leaves as templates for soft lithography

Wenming Wu; Rosanne M. Guijt; Yuliya E. Silina; Marcus Koch; Andreas Manz

We report a simple fast, practical and effective method for the replication of the complex venation patterns of natural leaves into PDMS with accuracy down to a lateral size of 500 nm. Optimising the amount of crosslinker enabled the replication and sealing of the microvascular structures to yield enclosed microfluidic networks. The use of plant leaves as templates for soft lithography was demonstrated across over ten species and included reticulate, arcuate, pinnate, parallel and palmate venation patterns. SEM imaging revealed replication of the plants microscopic and sub-microscopic topography into the PDMS structures, making this method especially attractive for mimicking biological structures for in vitro assays. Flow analysis revealed that the autonomous liquid transport velocity in 1st-order microchannel was 1.5–2.2 times faster than that in the 2nd-order microchannels across three leaf types, with the sorptivity rule surprisingly preserved during self-powered flow through leaf-inspired vascularity from Carpinus betulus.


International Journal of Molecular Sciences | 2013

Peptide Induced Crystallization of Calcium Carbonate on Wrinkle Patterned Substrate: Implications for Chitin Formation in Molluscs

Anindita Sengupta Ghatak; Marcus Koch; Christina Guth; Ingrid M. Weiss

We here present the nucleation and growth of calcium carbonate under the influence of synthetic peptides on topographically patterned poly(dimethylsiloxane) (PDMS) substrates, which have a controlled density of defects between the wrinkles. Experiments with two lysine-rich peptides derived from the extracellular conserved domain E22 of the mollusc chitin synthase Ar-CS1, AKKKKKAS (AS8) and EEKKKKKES (ES9) on these substrates showed their influence on the calcium carbonate morphology. A transition from polycrystalline composites to single crystalline phases was achieved with the peptide AS8 by changing the pH of the buffer solution. We analyzed three different pH values as previous experiments showed that E22 interacts with aragonite biominerals more strongly at pH 7.75 than at pH 9.0. At any given pH, crystals appeared in characteristic morphologies only on wrinkled substrates, and did not occur on the flat, wrinkle-free PDMS substrate. These results suggest that these wrinkled substrates could be useful for controlling the morphologies of other mineral/peptide and mineral/protein composites. In nature, these templates are formed enzymatically by glycosyltransferases containing pH-sensitive epitopes, similar to the peptides investigated here. Our in vitro test systems may be useful to gain understanding of the formation of distinct 3D morphologies in mollusc shells in response to local pH shifts during the mineralization of organic templates.


Materials Science and Engineering: C | 2016

Enhancement of the antimicrobial properties of orthorhombic molybdenum trioxide by thermal induced fracturing of the hydrates.

Shahram Shafaei; Daniel Van Opdenbosch; Tobias Fey; Marcus Koch; Tobias Kraus; Josef Peter Guggenbichler; Cordt Zollfrank

The oxides of the transition metal molybdenum exhibit excellent antimicrobial properties. We present the preparation of molybdenum trioxide dihydrate (MoO3 × 2H2O) by an acidification method and demonstrate the thermal phase development and morphological evolution during and after calcination from 25 °C to 600 °C. The thermal dehydration of the material was found to proceed in two steps. Microbiological roll-on tests using Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were performed and exceptional antimicrobial activities were determined for anhydrous samples with orthorhombic lattice symmetry and a large specific surface area. The increase in the specific surface area is due to crack formation and to the loss of the hydrate water after calcination at 300 °C. The results support the proposed antimicrobial mechanism for transition metal oxides, which based on a local acidity increase as a consequence of the augmented specific surface area.


Analytical Methods | 2016

Nanoporous anodic aluminum oxide films for UV/vis detection of noble and non-noble metals

Yuliya E. Silina; Tatiana A. Kychmenko; Marcus Koch

In this study, a simple, rapid and inexpensive approach for the screening of heavy metals with photometric reagents was developed based on porous, anodic aluminium oxide (AAO) films, with detection limits of 0.45 mg L−1 (Co2+), 0.25 mg L−1 (Pb2+) and 0.59 mg L−1 (Ni2+). Noble metal ions Ag+ and Pd2+, as well as Cu2+, formed nanoparticles within the AAO channels during micro-solid phase extraction driven by galvanic electroless displacement followed by UV detection.


Journal of Mass Spectrometry | 2017

A study of enhanced ion formation from metal‐semiconductor complexes in atmospheric pressure laser desorption/ionization mass spectrometry

Yuliya E. Silina; Petra Herbeck-Engel; Marcus Koch

The study of the key parameters impacted surface-assisted laser desorption/ionization-mass spectrometry is of broad interest. In previous studies, it has been shown that surface-assisted laser desorption/ionization-mass spectrometry is a complex process depending on multiple factors. In the presented study, we showed that neither porosity, light absorbance nor surface hydrophobicity alone influence the enhancement phenomena observed from the hybrid metal-semiconductor complexes versus individual targets, but small changes in the analyte attaching to the target significantly affect laser desorption ionization-efficiency. By means of Raman spectroscopy and scanning electron microscopy, it was revealed that the formation of an amorphous analyte layer after drying on a solid substrate was essential for the enhanced laser desorption ionization-signal observed from the hybrid metal-semiconductor targets, and the crystallization properties of the analyte appeared as a function of the substrate. Obtained results were used for the screening of regular and lactose-free milk samples through the hybrid metal-semiconductor target. Copyright


Journal of Structural Biology | 2016

In vivo modified organic matrix for testing biomineralization-related protein functions in differentiated Dictyostelium on calcite.

Magdalena Eder; Marcus Koch; Christina Muth; Angela Rutz; Ingrid M. Weiss

This work reports an in vivo approach for identifying the function of biomineralization-related proteins. Synthetic sequences of n16N, OC-17 and perlucin with signal peptides are produced in a novel Gateway expression system for Dictyostelium under the control of the [ecmB] promoter. A fast and easy scanning electron microscopic screening method was used to differentiate on the colony level between interplay effects of the proteins expressed in the extracellular matrix (ECM). Transformed Dictyostelium, which migrated as multicellular colonies on calcite crystals and left their ECM remnants on the surface were investigated also by energy-dispersive X-ray spectroscopy (EDX). Calcium minerals with and without phosphorous accumulated very frequently within the matrix of the Dictyostelium colonies when grown on calcite. Magnesium containing phosphorous granules were observed when colonies were exposed on silica. The absence of calcium EDX signals in these cases suggests that the external calcite crystals but not living cells represent the major source of calcium in the ECM. Several features of the system provide first evidence that each protein influences the properties of the matrix in a characteristic mode. Colonies transformed with perlucin produced a matrix with cracks on the length scale of a few microns throughout the matrix patch. For colonies with OC-17, almost no cracks were observed, regardless of the length scale. The non-transformed Dictyostelium (Ax3-Orf+) produced larger cracks. The strategy presented here develops the first step toward an efficient eukaryotic screening system for the combinatorial functionalization of materials by bioengineering in close analogy to natural biomineralization concepts.


Journal of Chromatography B | 2016

Interactions between DPPC as a component of lung surfactant and amorphous silica nanoparticles investigated by HILIC-ESI-MS.

Yuliya E. Silina; Jennifer Welck; Annette Kraegeloh; Marcus Koch; Claudia Fink-Straube

This paper reports a rapid HILIC-ESI-MS assay to quantify dipalmitoylphosphatidylcholine (DPPC) as component of lung surfactant for nanosafety studies. The technique was used to investigate the concentration-dependent sorption of DPPC to two-sizes of amorphous SiO2 nanoparticles (SiO2-NPs) in a MeOH:H2O (50/50v/v) mixture and in cell culture medium. In MeOH:H2O (50/50v/v), the sorption of DPPC was positively correlated with the nanoparticles concentration. A substantial affinity of small amorphous SiO2-NPs (25nm) to DPPC standard solution compared to bigger SiO2-NPs (75nm) was not confirmed for biological specimens. After dispersion of SiO2-NPs in DPPC containing cell culture medium, the capacity of the SiO2-NPs to bind DPPC was reduced in comparison to a mixture of MeOH:H2O (50/50v/v) regardless from the nanoparticles size. Furthermore, HILIC-ESI-MS revealed that A549 cells internalized DPPC during growth in serum containing medium complemented with DPPC. This finding was in a good agreement with the potential of alveolar type II cells to recycle surfactant components. Binding of lipids present in the cell culture medium to amorphous SiO2-NPs was supported by means of HILIC-ESI-MS, TEM and ICP-MS independently.


Journal of the American Society for Mass Spectrometry | 2014

Novel Galvanic Nanostructures of Ag and Pd for Efficient Laser Desorption/Ionization of Low Molecular Weight Compounds

Yuliya E. Silina; Florian Meier; Valeriy A. Nebolsin; Marcus Koch; Dietrich A. Volmer

Collaboration


Dive into the Marcus Koch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Schumann

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge