Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus Lívio Varella Coelho is active.

Publication


Featured researches published by Marcus Lívio Varella Coelho.


Pharmaceuticals | 2010

Lysostaphin: A Staphylococcal Bacteriolysin with Potential Clinical Applications.

Maria do Carmo de Freire Bastos; Bruna Gonçalves Coutinho; Marcus Lívio Varella Coelho

Lysostaphin is an antimicrobial agent belonging to a major class of antimicrobial peptides and proteins known as the bacteriocins. Bacteriocins are bacterial antimicrobial peptides which generally exhibit bactericidal activity against other bacteria. Bacteriocin production is a self-protection mechanism that helps the microorganisms to survive in their natural habitats. Bacteriocins are currently distributed into three main classes. Staphylococcins are bacteriocins produced by staphylococci, which are Gram-positive bacteria of medical and veterinary importance. Lysostaphin is the only class III staphylococcin described so far. It exhibits a high degree of antistaphylococcal bacteriolytic activity, being inactive against bacteria of all other genera. Infections caused by staphylococci continue to be a problem worldwide not only in healthcare environments but also in the community, requiring effective measures for controlling their spread. Since lysostaphin kills human and animal staphylococcal pathogens, it has potential biotechnological applications in the treatment of staphylococcal infections. In vitro and in vivo studies performed with lysostaphin have shown that this staphylococcin has potential to be used, solely or in combination with other antibacterial agents, to prevent or treat bacterial staphylococcal infectious diseases.


Microbiology | 2015

Resistance to bacteriocins produced by Gram-positive bacteria

Maria do Carmo de Freire Bastos; Marcus Lívio Varella Coelho; Olinda Cabral da Silva Santos

Bacteriocins are prokaryotic proteins or peptides with antimicrobial activity. Most of them exhibit a broad spectrum of activity, inhibiting micro-organisms belonging to different genera and species, including many bacterial pathogens which cause human, animal or plant infections. Therefore, these substances have potential biotechnological applications in either food preservation or prevention and control of bacterial infectious diseases. However, there is concern that continuous exposure of bacteria to bacteriocins may select cells resistant to them, as observed for conventional antimicrobials. Based on the models already investigated, bacteriocin resistance may be either innate or acquired and seems to be a complex phenomenon, arising at different frequencies (generally from 10(-9) to 10(-2)) and by different mechanisms, even amongst strains of the same bacterial species. In the present review, we discuss the prevalence, development and molecular mechanisms involved in resistance to bacteriocins produced by Gram-positive bacteria. These mechanisms generally involve changes in the bacterial cell envelope, which result in (i) reduction or loss of bacteriocin binding or insertion, (ii) bacteriocin sequestering, (iii) bacteriocin efflux pumping (export) and (iv) bacteriocin degradation, amongst others. Strategies that can be used to overcome this resistance are also addressed.


Research in Microbiology | 2014

Immunity to the Staphylococcus aureus leaderless four-peptide bacteriocin aureocin A70 is conferred by AurI, an integral membrane protein.

Marcus Lívio Varella Coelho; Bruna Gonçalves Coutinho; Olinda Cabral da Silva Santos; Ingolf F. Nes; Maria do Carmo de Freire Bastos

Aureocin A70, which is produced by Staphylococcus aureus A70, is the only four-component bacteriocin described thus far. The genetic determinants responsible for its production are arranged as three transcriptional units encoded by the 7.9-kb plasmid pRJ6. While the transcriptional unit formed by the genes aurABCD encodes the bacteriocin structural peptides, a second divergent gene, aurT, codes for an ABC transporter involved in bacteriocin externalization. The third transcriptional unit is composed of two genes, orfAB, whose functions were hitherto unknown. RT-PCR analysis of orfAB expression revealed that they are arranged as an operon. When orfAB, either with or without the transcriptional terminator found downstream of orfB, was expressed in two different S. aureus strains sensitive to aureocin A70, all strains became immune to this bacteriocin. Cloning of orfB alone, with or without the transcriptional terminator, confirmed orfB participation in immunity, although full immunity was not observed. An increase in immunity was achieved when two copies of orfB were cloned oriented with the exogenous Plac promoter present in the expression vector pT181mcs. orfB (here referred to as aurI) was shown to be responsible for aureocin A70 immunity, but the full immunity phenotype seems to depend on translational coupling involving orfA, which encodes a putative transcriptional regulator, and aurI.


Journal of Bacteriology | 2012

Genes Involved in Immunity to and Secretion of Aureocin A53, an Atypical Class II Bacteriocin Produced by Staphylococcus aureus A53

Janaína Santos Nascimento; Marcus Lívio Varella Coelho; Hilana Ceotto; Amina Potter; Luana Rocha Fleming; Zhian Salehian; Ingolf F. Nes; Maria do Carmo de Freire Bastos

Aureocin A53 is an antimicrobial peptide produced by Staphylococcus aureus A53. The genetic determinants involved in aureocin A53 production and immunity to its action are organized in at least four transcriptional units encoded by the 10.4-kb plasmid pRJ9. One transcriptional unit carries only the bacteriocin structural gene, aucA. No immunity gene is found downstream of aucA, as part of the same transcriptional unit. Further downstream of aucA is found an operon which contains the three genes aucEFG, whose products seem to associate to form a dedicated ABC transporter. When aucEFG were expressed in RN4220, an aureocin A53-sensitive S. aureus strain, this strain became partially resistant to the bacteriocin. A gene disruption mutant in aucE was defective in aureocin A53 externalization and more sensitive to aureocin A53 than the wild-type strain, showing that aucEFG are involved in immunity to aureocin A53 by active extrusion of the bacteriocin. Full resistance to aureocin A53 was exhibited by transformants carrying, besides aucEFG, the operon formed by two genes, aucIB and aucIA, located between aucA and aucEFG and carried in the opposite strand. AucIA and AucIB share similarities with hypothetical proteins not found in the gene clusters of other bacteriocins. A gene disruption mutant in orf8, located upstream of aucA and whose product exhibits about 50% similarity to a number of hypothetical membrane proteins found in many Gram-positive bacteria, was strongly affected in aureocin A53 externalization but resistant to aureocin A53, suggesting that Orf8 is also involved in aureocin A53 secretion.


Journal of Microbiology | 2009

Mobilization functions of the bacteriocinogenic plasmid pRJ6 of Staphylococcus aureus

Marcus Lívio Varella Coelho; Hilana Ceotto; Danielle Jannuzzi Madureira; Ingolf F. Nes; Maria do Carmo de Freire Bastos

Plasmid pRJ6 is the first known bacteriocinogenic mobilizable (Mob) plasmid of Staphylococcus aureus. Its Mob region is composed of four mob genes (mobCDAB) arranged as an operon, a genetic organization uncommon among S. aureus Mob plasmids. oriTpRJ6 was detected in a region of 431 bp, positioned immediately upstream of mobC. This region, when cloned into pCN37, was able to confer mobilization to the re-combinant plasmid only in the presence of pRJ6. The entire Mob region, including oriTpRJ6, is much more similar to Mob regions from several coagulase-negative staphylococci plasmids, although some remarkable similarities with S. aureus Mob plasmids can also be noted. These similarities include the presence within oriTpRJ6 of the three mcb (MobC binding sites), firstly described in pC221 and pC223, an identical nick site also found in these same plasmids, and a nearly identical srapC223 site (sequence recognized by MobA). pRJ6 was successfully transferred to S. epidermidis by conjugation in the presence of the conjugative plasmid pGOl. Altogether these findings suggest that pRJ6 might have been originally a coagulase-negative staphylococci plasmid that had been transferred successfully to S. aureus.


Microbiology | 2014

The gene cluster of aureocyclicin 4185: the first cyclic bacteriocin of Staphylococcus aureus

Amina Potter; Hilana Ceotto; Marcus Lívio Varella Coelho; Allan J. Guimarães; Maria do Carmo de Freire Bastos

Staphylococcus aureus 4185 was previously shown to produce at least two bacteriocins. One of them is encoded by pRJ101. To detect the bacteriocin-encoding gene cluster, an ~9160 kb region of pRJ101 was sequenced. In silico analyses identified 10 genes (aclX, aclB, aclI, aclT, aclC, aclD, aclA, aclF, aclG and aclH) that might be involved in the production of a novel cyclic bacteriocin named aureocyclicin 4185. The organization of these genes was quite similar to that of the gene cluster responsible for carnocyclin A production and immunity. Four putative proteins encoded by these genes (AclT, AclC, AclD and AclA) also exhibited similarity to proteins encoded by cyclic bacteriocin gene clusters. Mutants derived from insertion of Tn917-lac into aclC, aclF, aclH and aclX were affected in bacteriocin production and growth. AclX is a 205 aa putative protein not encoded by the gene clusters of other cyclic bacteriocins. AclX exhibits 50 % similarity to a permease and has five putative membrane-spanning domains. Transcription analyses suggested that aclX is part of the aureocyclicin 4185 gene cluster, encoding a protein required for bacteriocin production. The aclA gene is the structural gene of aureocyclicin 4185, which shows 65 % similarity to garvicin ML. AclA is proposed to be cleaved off, generating a mature peptide with a predicted Mr of 5607 Da (60 aa). By homology modelling, AclA presents four α-helices, like carnocyclin A. AclA could not be found at detectable levels in the culture supernatant of a strain carrying only pRJ101. To our knowledge, this is the first report of a cyclic bacteriocin gene cluster in the genus Staphylococcus.


Current Topics in Medicinal Chemistry | 2017

Bacterial Labionin-Containing Peptides and Sactibiotics: Unusual Types of Antimicrobial Peptides with Potential Use in Clinical Settings (A Review).

Marcus Lívio Varella Coelho; Andreza Freitas de Souza Duarte; Maria do Carmo de Freire Bastos

One of the biggest challenges faced presently by clinicians is the emergence of multidrug -resistant pathogens that can infect humans and animals. To control the infections caused by such pathogens the development of new drugs is required. Bacteria are a rich source of ribosomally -synthesized antimicrobial peptides known as bacteriocins, which are characterized by the presence of a self-defense immunity system. Labionin-containing lantibiotics and sactibiotics are posttranslationally modified bacteriocins with peculiar features. Labionin-containing peptides belong to subclass Ic lantibiotics in which the carbacyclic triamino triacid labionin, a structural variant of lanthionine, and a methyl-substitute labionin derivative are found, giving the molecule a labyrinthine structure. Sactibiotics are circular or linear peptides belonging to a distinct bacteriocin class (class V) which is characterized by the presence of cross-linkages formed by the thiol group of cysteine residues and the α-carbon of acceptor amino acids. A few examples of these bacteriocins have been described in the literature to date, although putative gene clusters with the potential to encode such peptides can be found in the genome of many bacterial species. Some peptides already under study exhibit potential biotechnological applications because of their remarkable antibacterial or antiviral activities, as well as their analgesic activity. Therefore, in this review, the main findings concerning these peptides will be addressed and discussed, with an emphasis on their potential use in clinical settings.One of the biggest challenges faced presently by clinicians is the emergence of multidrug -resistant pathogens that can infect humans and animals. To control the infections caused by such pathogens the development of new drugs is required. Bacteria are a rich source of ribosomally -synthesized antimicrobial peptides known as bacteriocins, which are characterized by the presence of a self-defense immunity system. Labionin-containing lantibiotics and sactibiotics are posttranslationally modified bacteriocins with peculiar features. Labionin-containing peptides belong to subclass Ic lantibiotics in which the carbacyclic triamino triacid labionin, a structural variant of lanthionine, and a methyl-substitute labionin derivative are found, giving the molecule a labyrinthine structure. Sactibiotics are circular or linear peptides belonging to a distinct bacteriocin class (class V) which is characterized by the presence of cross-linkages formed by the thiol group of cysteine residues and the α-carbon of acceptor amino acids. A few examples of these bacteriocins have been described in the literature to date, although putative gene clusters with the potential to encode such peptides can be found in the genome of many bacterial species. Some peptides already under study exhibit potential biotechnological applications because of their remarkable antibacterial or antiviral activities, as well as their analgesic activity. Therefore, in this review, the main findings concerning these peptides will be addressed and discussed, with an emphasis on their potential use in clinical settings.


Research in Microbiology | 2016

Insights into aureocin A70 regulation: participation of regulator AurR, alternative transcription factor σB and phage ϕ11 regulator cI

Marcus Lívio Varella Coelho; Luana Rocha Fleming; Maria do Carmo de Freire Bastos

Aureocin A70 is a four-component bacteriocin produced by Staphylococcus aureus A70. Its locus encompasses three transcriptional units coding for: (i) structural peptides (aurABCD), (ii) an ABC transporter (aurT) and (iii) the dedicated immunity protein and a putative transcriptional regulator (aurRI). The data provided here showed that AurR is an HTH-containing protein that reduces aureocin A70 production on solid medium, but not in broth. AurR seems to work similarly to LtnR and CylR2, repressors of lantibiotics lacticin 3147 and cytolysin, respectively. At least two other factors play a role in aureocin A70 production: (i) the alternative σ(B) factor, as σ(B)-defective cells produce more bacteriocin than the restored σ(B+) cells, and (ii) the ϕ11 regulator cI, since a lysogenic strain for ϕ11 exhibited a significant reduction in aureocin A70 production on solid medium when compared with the non-lysogenic isogenic strain. Full aeration and ROS generation abolished the effect of the phage regulators on aureocin A70 production. Interestingly, the ϕ11 regulator cI seems to cooperate with AurR to abolish aureocin A70 production. This study therefore represents the first report showing that phage regulators may play a role in regulation of bacteriocin production.


Fems Microbiology Letters | 2016

Transfer of mupirocin resistance from Staphylococcus haemolyticus clinical strains to Staphylococcus aureus through conjugative and mobilizable plasmids.

Ciro César Rossi; Natalia Ferreira; Marcus Lívio Varella Coelho; Ricardo P. Schuenck; Maria do Carmo de Freire Bastos

Coagulase-negative staphylococci are thought to act as reservoirs of antibiotic resistance genes that can be transferred to Staphylococcus aureus, thus hindering the combat of this bacterium. In this work, we analyzed the presence of plasmids conferring resistance to the antibiotic mupirocin-widely used to treat and prevent S. aureus infections in hospital environments-in nosocomial S. haemolyticus strains. About 12% of the 75 strains tested were resistant to mupirocin, and this phenotype was correlated with the presence of plasmids. These plasmids were shown to be diverse, being either conjugative or mobilizable, and capable of transferring mupirocin resistance to S. aureus Our findings reinforce that S. haemolyticus, historically and mistakenly considered as a less important pathogen, is a reservoir of resistance genes which can be transferred to other bacteria, such as S. aureus, emphasizing the necessity of more effective strategies to detect and combat this emergent opportunistic pathogen.


Journal of Molecular Microbiology and Biotechnology | 2011

Revealing the Latent Mobilization Capability of the Staphylococcal Bacteriocinogenic Plasmid pRJ9

Bruna Gonçalves Coutinho; Marcus Lívio Varella Coelho; Hilana Ceotto; Maria do Carmo de Freire Bastos

Plasmid pRJ9 is a non-self-mobilizable bacteriocinogenic plasmid from Staphylococcus aureus. Despite this feature, DNA sequencing and RT-PCR experiments showed that it presents a Mob region with three genes (mobCAB), transcribed as an operon. In silico analysis of the Mob proteins encoded by pRJ9 showed that they present all the conserved functional features reported until present as being essential for plasmid mobilization. Moreover, they showed a high identity to Mob proteins encoded by mobilizable plasmids from Staphylococcus spp., especially to those encoded by plasmid pRJ6, which presents four mob genes (mobCDAB). A putative oriT region was also found upstream of the pRJ9 mob operon. pRJ9 could only be successfully mobilized by pGO1 when pRJ6 was present in the same strain. Further experiments showed that the pRJ9 oriT can be recognized by the pRJ6 Mob proteins, confirming its functionality. As pRJ9 does not possess a mobD gene while pRJ6 does, the absence of this gene was believed to be responsible for its lack of mobilization. However, conjugation experiments with a donor strain carrying also mobD cloned into an S. aureus vector showed that pRJ9 does not become mobilized even in the presence of the protein MobD encoded by pRJ6. Therefore, the reasons for pRJ9 failure to be mobilized are presently unknown.

Collaboration


Dive into the Marcus Lívio Varella Coelho's collaboration.

Top Co-Authors

Avatar

Maria do Carmo de Freire Bastos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Hilana Ceotto

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Bruna Gonçalves Coutinho

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Amina Potter

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Andreza Freitas de Souza Duarte

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Danielle Jannuzzi Madureira

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Janaína Santos Nascimento

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Luana Rocha Fleming

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Maria Aparecida Vasconcelos de Paiva Brito

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Olinda Cabral da Silva Santos

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge