Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus Lundberg is active.

Publication


Featured researches published by Marcus Lundberg.


Journal of Chemical Theory and Computation | 2007

Parameter calibration of transition-metal elements for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method : Sc, Ti, Fe, Co, and Ni

Guishan Zheng; Henryk A. Witek; Petia Bobadova-Parvanova; Stephan Irle; Djamaladdin G. Musaev; Rajeev Prabhakar; Keiji Morokuma; Marcus Lundberg; Marcus Elstner; Christof Köhler; Thomas Frauenheim

Recently developed parameters for five first-row transition-metal elements (M = Sc, Ti, Fe, Co, and Ni) in combination with H, C, N, and O as well as the same metal (M-M) for the spin-polarized self-consistent-charge density-functional tight-binding (DFTB) method have been calibrated. To test their performance a couple sets of compounds have been selected to represent a variety of interactions and bonding schemes that occur frequently in transition-metal containing systems. The results show that the DFTB method with the present parameters in most cases reproduces structural properties very well, but the bond energies and the relative energies of different spin states only qualitatively compared to the B3LYP/SDD+6-31G(d) density functional (DFT) results. An application to the ONIOM(DFT:DFTB) indicates that DFTB works well as the low level method for the ONIOM calculation.


Journal of Chemical Theory and Computation | 2009

Transition States in a Protein Environment - ONIOM QM:MM Modeling of Isopenicillin N Synthesis.

Marcus Lundberg; Tsutomu Kawatsu; Thom Vreven; Michael J. Frisch; Keiji Morokuma

To highlight the role of the protein in metal enzyme catalysis, we optimize ONIOM QM:MM transition states and intermediates for the full reaction of the nonheme iron enzyme isopenicillin N synthase (IPNS). Optimizations of transition states in large protein systems are possible using our new geometry optimizer with quadratic coupling between the QM and MM regions [Vreven, T. et al. Mol. Phys. 2006, 104, 701-704]. To highlight the effect of the metal center, results from the protein model are compared to results from an active site model containing only the metal center and coordinating residues [Lundberg, M. et al. Biochemistry 2008, 47, 1031-1042]. The analysis suggests that the main catalytic effect comes from the metal center, while the protein controls the reactivity to achieve high product specificity. As an example, hydrophobic residues align the valine substrate radical in a favorable conformation for thiazolidine ring closure and contribute to product selectivity and high stereospecificity. A low-barrier pathway for β-lactam formation is found where the proton required for heterolytic O-O bond cleavage comes directly from the valine N-H group of the substrate. The alternative mechanism, where the proton in O-O bond cleavage initially comes from an iron water ligand, can be disfavored by the electrostatic interactions with the surrounding protein. Explicit protein effects on transition states are typically 1-6 kcal/mol in the present enzyme and can be understood by considering whether the transition state involves large movements of the substrate as well as whether it involves electron transfer.


Journal of the American Chemical Society | 2008

Mechanism of efficient firefly bioluminescence via adiabatic transition state and seam of sloped conical intersection.

Lung Wa Chung; Shigehiko Hayashi; Marcus Lundberg; Toru Nakatsu; Hiroaki Kato; Keiji Morokuma

Firefly emission is a well-known efficient bioluminescence. However, the mystery of the efficient thermal generation of electronic excited states in firefly still remains unsolved, particularly at the atomic and molecular levels. We performed SA-CASSCF(12,12)/6-31G* and CASPT2(12,12)/6-31G*//SA-CASSCF(12,12)/6-31G* calculations to elucidate the reaction mechanism of bioluminescence from the firefly dioxetanone in the gas phase. Adiabatic transition state (TS) for the O-O bond cleavage and the minimum energy conical intersection (MECI) were located and characterized. The unique topology of MECI featuring a seam of a sloped conical intersection for the firefly dioxetanone, which was uncovered for the first time, emerges along the reaction pathway to provide a widely extended channel to diabatically access the excited-state from the ground state.


Biochemistry | 2008

The mechanism for isopenicillin N synthase from density-functional modeling highlights the similarities with other enzymes in the 2-His-1-carboxylate family.

Marcus Lundberg; Per E. M. Siegbahn; Keiji Morokuma

Isopenicillin N synthase (IPNS) catalyzes a key step in the biosynthesis of the important beta-lactam antibiotics penicillins and cephalosporins. Density-functional calculations with the B3LYP functional are used to propose a detailed mechanism for this reaction. The results support the general scheme outlined from experimental observations, with formation of a four-membered beta-lactam ring followed by formation of a five-membered thiazolidine ring. However, an alternative mechanism for the heterolytic O-O bond cleavage and beta-lactam ring formation steps is proposed. The former part involves protonation of the distal oxygen by an iron-bound water ligand. This mechanism highlights the strong similarities that exist between IPNS and other enzymes of the 2-histidine-1-carboxylate family, especially pterin-dependent amino acid hydroxylases and alpha-keto acid-dependent dioxygenases. Both activation of the cysteine beta-C-H bond by an iron-bound superoxo radical and activation of the valine beta-C-H bond by a ferryl-oxo species show reaction barriers close to the experimentally measured one. These results are in agreement with kinetic isotope experiments that suggest both C-H bond activation steps to be partially rate limiting. The ring formation sequence is determined by the relative strengths of the two C-H bonds. Only the ferryl-oxo intermediate is capable of activating the stronger valine beta-C-H bond.


Journal of the American Chemical Society | 2013

Metal–Ligand Covalency of Iron Complexes from High-Resolution Resonant Inelastic X-ray Scattering

Marcus Lundberg; Thomas Kroll; Serena DeBeer; Uwe Bergmann; Samuel A. Wilson; Pieter Glatzel; Dennis Nordlund; Britt Hedman; Keith O. Hodgson; Edward I. Solomon

Data from Kα resonant inelastic X-ray scattering (RIXS) have been used to extract electronic structure information, i.e., the covalency of metal-ligand bonds, for four iron complexes using an experimentally based theoretical model. Kα RIXS involves resonant 1s→3d excitation and detection of the 2p→1s (Kα) emission. This two-photon process reaches similar final states as single-photon L-edge (2p→3d) X-ray absorption spectroscopy (XAS), but involves only hard X-rays and can therefore be used to get high-resolution L-edge-like spectra for metal proteins, solution catalysts and their intermediates. To analyze the information content of Kα RIXS spectra, data have been collected for four characteristic σ-donor and π-back-donation complexes: ferrous tacn [Fe(II)(tacn)2]Br2, ferrocyanide [Fe(II)(CN)6]K4, ferric tacn [Fe(III)(tacn)2]Br3 and ferricyanide [Fe(III)(CN)6]K3. From these spectra metal-ligand covalencies can be extracted using a charge-transfer multiplet model, without previous information from the L-edge XAS experiment. A direct comparison of L-edge XAS and Kα RIXS spectra show that the latter reaches additional final states, e.g., when exciting into the e(g) (σ*) orbitals, and the splitting between final states of different symmetry provides an extra dimension that makes Kα RIXS a more sensitive probe of σ-bonding. Another key difference between L-edge XAS and Kα RIXS is the π-back-bonding features in ferro- and ferricyanide that are significantly more intense in L-edge XAS compared to Kα RIXS. This shows that two methods are complementary in assigning electronic structure. The Kα RIXS approach can thus be used as a stand-alone method, in combination with L-edge XAS for strongly covalent systems that are difficult to probe by UV/vis spectroscopy, or as an extension to conventional absorption spectroscopy for a wide range of transition metal enzymes and catalysts.


Journal of Chemical Physics | 2014

Restricted active space calculations of L-edge X-ray absorption spectra: From molecular orbitals to multiplet states

Rahul V. Pinjari; Mickaël G. Delcey; Meiyuan Guo; Michael Odelius; Marcus Lundberg

The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.


Diabetes | 2016

Expression of Interferon-Stimulated Genes in Insulitic Pancreatic Islets of Patients Recently Diagnosed With Type 1 Diabetes

Marcus Lundberg; Lars Krogvold; Enida Kuric; Knut Dahl-Jørgensen; Oskar Skog

A primary insult to the pancreatic islets of Langerhans, leading to the activation of innate immunity, has been suggested as an important step in the inflammatory process in type 1 diabetes (T1D). The aim of this study was to examine whether interferon (IFN)-stimulated genes (ISGs) are overexpressed in human T1D islets affected with insulitis. By using laser capture microdissection and a quantitative PCR array, 23 of 84 examined ISGs were found to be overexpressed by at least fivefold in insulitic islets from living patients with recent-onset T1D, participating in the Diabetes Virus Detection (DiViD) study, compared with islets from organ donors without diabetes. Most of the overexpressed ISGs, including GBP1, TLR3, OAS1, EIF2AK2, HLA-E, IFI6, and STAT1, showed higher expression in the islet core compared with the peri-islet area containing the surrounding immune cells. In contrast, the T-cell attractant chemokine CXCL10 showed an almost 10-fold higher expression in the peri-islet area than in the islet, possibly partly explaining the localization of T cells mainly to this region. In conclusion, insulitic islets from recent-onset T1D subjects show overexpression of ISGs, with an expression pattern similar to that seen in islets infected with virus or exposed to IFN-γ/interleukin-1β or IFN-α.


Journal of the American Chemical Society | 2014

Resonant Inelastic X-ray Scattering on Ferrous and Ferric Bis-imidazole Porphyrin and Cytochrome c: Nature and Role of the Axial Methionine–Fe Bond

Thomas Kroll; Ryan G. Hadt; Samuel A. Wilson; Marcus Lundberg; James J. Yan; Tsu-Chien Weng; Dimosthenis Sokaras; Roberto Alonso-Mori; D. Casa; M. H. Upton; Britt Hedman; Keith O. Hodgson; Edward I. Solomon

Axial Cu–S(Met) bonds in electron transfer (ET) active sites are generally found to lower their reduction potentials. An axial S(Met) bond is also present in cytochrome c (cyt c) and is generally thought to increase the reduction potential. The highly covalent nature of the porphyrin environment in heme proteins precludes using many spectroscopic approaches to directly study the Fe site to experimentally quantify this bond. Alternatively, L-edge X-ray absorption spectroscopy (XAS) enables one to directly focus on the 3d-orbitals in a highly covalent environment and has previously been successfully applied to porphyrin model complexes. However, this technique cannot be extended to metalloproteins in solution. Here, we use metal K-edge XAS to obtain L-edge like data through 1s2p resonance inelastic X-ray scattering (RIXS). It has been applied here to a bis-imidazole porphyrin model complex and cyt c. The RIXS data on the model complex are directly correlated to L-edge XAS data to develop the complementary nature of these two spectroscopic methods. Comparison between the bis-imidazole model complex and cyt c in ferrous and ferric oxidation states show quantitative differences that reflect differences in axial ligand covalency. The data reveal an increased covalency for the S(Met) relative to N(His) axial ligand and a higher degree of covalency for the ferric states relative to the ferrous states. These results are reproduced by DFT calculations, which are used to evaluate the thermodynamics of the Fe–S(Met) bond and its dependence on redox state. These results provide insight into a number of previous chemical and physical results on cyt c.


Journal of Chemical Theory and Computation | 2013

Proton/Hydrogen Transfer Mechanisms in the Guanine-Cytosine Base Pair: Photostability and Tautomerism.

Vicenta Sauri; João Paulo Gobbo; Juan José Serrano-Pérez; Marcus Lundberg; Pedro B. Coto; Luis Serrano-Andrés; Antonio Carlos Borin; Roland Lindh; Manuela Merchán; Daniel Roca-Sanjuán

Proton/hydrogen-transfer processes have been broadly studied in the past 50 years to explain the photostability and the spontaneous tautomerism in the DNA base pairs. In the present study, the CASSCF/CASPT2 methodology is used to map the two-dimensional potential energy surfaces along the stretched NH reaction coordinates of the guanine-cytosine (GC) base pair. Concerted and stepwise pathways are explored initially in vacuo, and three mechanisms are studied: the stepwise double proton transfer, the stepwise double hydrogen transfer, and the concerted double proton transfer. The results are consistent with previous findings related to the photostability of the GC base pair, and a new contribution to tautomerism is provided. The C-based imino-oxo and imino-enol GC tautomers, which can be generated during the UV irradiation of the Watson-Crick base pair, have analogous radiationless energy-decay channels to those of the canonical base pair. In addition, the C-based imino-enol GC tautomer is thermally less stable. A study of the GC base pair is carried out subsequently taking into account the DNA surroundings in the biological environment. The most important stationary points are computed using the quantum mechanics/molecular mechanics (QM/MM) approach, suggesting a similar scenario for the proton/hydrogen-transfer phenomena in vacuo and in DNA. Finally, the static model is complemented by ab initio dynamic simulations, which show that vibrations at the hydrogen bonds can indeed originate hydrogen-transfer processes in the GC base pair. The relevance of the present findings for the rationalization of the preservation of the genetic code and mutagenesis is discussed.


Journal of the American Chemical Society | 2014

Role of Substrate Positioning in the Catalytic Reaction of 4-Hydroxyphenylpyruvate Dioxygenase-A QM/MM Study

Anna Wójcik; Ewa Broclawik; Per E. M. Siegbahn; Marcus Lundberg; Graham R. Moran; Tomasz Borowski

Ring hydroxylation and coupled rearrangement reactions catalyzed by 4-hydroxyphenylpyruvate dioxygenase were studied with the QM/MM method ONIOM(B3LYP:AMBER). For electrophilic attack of the ferryl species on the aromatic ring, five channels were considered: attacks on the three ring atoms closest to the oxo ligand (C1, C2, C6) and insertion of oxygen across two bonds formed by them (C1-C2, C1-C6). For the subsequent migration of the carboxymethyl substituent, two possible directions were tested (C1→C2, C1→C6), and two different mechanisms were sought (stepwise radical, single-step heterolytic). In addition, formation of an epoxide (side)product and benzylic hydroxylation, as catalyzed by the closely related hydroxymandelate synthase, were investigated. From the computed reaction free energy profiles it follows that the most likely mechanism of 4-hydroxyphenylpyruvate dioxygenase involves electrophilic attack on the C1 carbon of the ring and subsequent single-step heterolytic migration of the substituent. Computed values of the kinetic isotope effect for this step are inverse, consistent with available experimental data. Electronic structure arguments for the preferred mechanism of attack on the ring are also presented.

Collaboration


Dive into the Marcus Lundberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Kroll

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge