Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus R. Kronforst is active.

Publication


Featured researches published by Marcus R. Kronforst.


Nature | 2014

doublesex is a mimicry supergene

Krushnamegh Kunte; Wei Zhang; A. Tenger-Trolander; D. H. Palmer; A. Martin; R. D. Reed; Sean P. Mullen; Marcus R. Kronforst

One of the most striking examples of sexual dimorphism is sex-limited mimicry in butterflies, a phenomenon in which one sex—usually the female—mimics a toxic model species, whereas the other sex displays a different wing pattern. Sex-limited mimicry is phylogenetically widespread in the swallowtail butterfly genus Papilio, in which it is often associated with female mimetic polymorphism. In multiple polymorphic species, the entire wing pattern phenotype is controlled by a single Mendelian ‘supergene’. Although theoretical work has explored the evolutionary dynamics of supergene mimicry, there are almost no empirical data that address the critical issue of what a mimicry supergene actually is at a functional level. Using an integrative approach combining genetic and association mapping, transcriptome and genome sequencing, and gene expression analyses, we show that a single gene, doublesex, controls supergene mimicry in Papilio polytes. This is in contrast to the long-held view that supergenes are likely to be controlled by a tightly linked cluster of loci. Analysis of gene expression and DNA sequence variation indicates that isoform expression differences contribute to the functional differences between dsx mimicry alleles, and protein sequence evolution may also have a role. Our results combine elements from different hypotheses for the identity of supergenes, showing that a single gene can switch the entire wing pattern among mimicry phenotypes but may require multiple, tightly linked mutations to do so.


Genetics | 2015

The Functional Basis of Wing Patterning in Heliconius Butterflies: The Molecules Behind Mimicry

Marcus R. Kronforst; Riccardo Papa

Wing-pattern mimicry in butterflies has provided an important example of adaptation since Charles Darwin and Alfred Russell Wallace proposed evolution by natural selection >150 years ago. The neotropical butterfly genus Heliconius played a central role in the development of mimicry theory and has since been studied extensively in the context of ecology and population biology, behavior, and mimicry genetics. Heliconius species are notable for their diverse color patterns, and previous crossing experiments revealed that much of this variation is controlled by a small number of large-effect, Mendelian switch loci. Recent comparative analyses have shown that the same switch loci control wing-pattern diversity throughout the genus, and a number of these have now been positionally cloned. Using a combination of comparative genetic mapping, association tests, and gene expression analyses, variation in red wing patterning throughout Heliconius has been traced back to the action of the transcription factor optix. Similarly, the signaling ligand WntA has been shown to control variation in melanin patterning across Heliconius and other butterflies. Our understanding of the molecular basis of Heliconius mimicry is now providing important insights into a variety of additional evolutionary phenomena, including the origin of supergenes, the interplay between constraint and evolvability, the genetic basis of convergence, the potential for introgression to facilitate adaptation, the mechanisms of hybrid speciation in animals, and the process of ecological speciation.


Genome Biology | 2016

Genome-wide introgression among distantly related Heliconius butterfly species

Wei Zhang; Kanchon K. Dasmahapatra; James Mallet; Gilson Rudinei Pires Moreira; Marcus R. Kronforst

BackgroundAlthough hybridization is thought to be relatively rare in animals, the raw genetic material introduced via introgression may play an important role in fueling adaptation and adaptive radiation. The butterfly genus Heliconius is an excellent system to study hybridization and introgression but most studies have focused on closely related species such as H. cydno and H. melpomene. Here we characterize genome-wide patterns of introgression between H. besckei, the only species with a red and yellow banded ‘postman’ wing pattern in the tiger-striped silvaniform clade, and co-mimetic H. melpomene nanna.ResultsWe find a pronounced signature of putative introgression from H. melpomene into H. besckei in the genomic region upstream of the gene optix, known to control red wing patterning, suggesting adaptive introgression of wing pattern mimicry between these two distantly related species. At least 39 additional genomic regions show signals of introgression as strong or stronger than this mimicry locus. Gene flow has been on-going, with evidence of gene exchange at multiple time points, and bidirectional, moving from the melpomene to the silvaniform clade and vice versa. The history of gene exchange has also been complex, with contributions from multiple silvaniform species in addition to H. besckei. We also detect a signature of ancient introgression of the entire Z chromosome between the silvaniform and melpomene/cydno clades.ConclusionsOur study provides a genome-wide portrait of introgression between distantly related butterfly species. We further propose a comprehensive and efficient workflow for gene flow identification in genomic data sets.


Biology Letters | 2013

Do Heliconius butterfly species exchange mimicry alleles

Joel Smith; Marcus R. Kronforst

Hybridization has the potential to transfer beneficial alleles across species boundaries, and there are a growing number of examples in which this has apparently occurred. Recent studies suggest that Heliconius butterflies have transferred wing pattern mimicry alleles between species via hybridization, but ancestral polymorphism could also produce a signature of shared ancestry around mimicry genes. To distinguish between these alternative hypotheses, we measured DNA sequence divergence around putatively introgressed mimicry loci and compared this with the rest of the genome. Our results reveal that putatively introgressed regions show strongly reduced sequence divergence between co-mimetic species, suggesting that their divergence times are younger than the rest of the genome. This is consistent with introgression and not ancestral variation. We further show that this signature of introgression occurs at sites throughout the genome, not just around mimicry genes.


Nature Communications | 2014

Ancient homology underlies adaptive mimetic diversity across butterflies

Jason R. Gallant; Vance E. Imhoff; Arnaud Martin; Wesley K. Savage; Nicola L. Chamberlain; Ben L. Pote; Chelsea Peterson; Gabriella E. Smith; Benjamin R. Evans; Robert D. Reed; Marcus R. Kronforst; Sean P. Mullen

Convergent evolution provides a rare, natural experiment with which to test the predictability of adaptation at the molecular level. Little is known about the molecular basis of convergence over macro-evolutionary timescales. Here we use a combination of positional cloning, population genomic resequencing, association mapping and developmental data to demonstrate that positionally orthologous nucleotide variants in the upstream region of the same gene, WntA, are responsible for parallel mimetic variation in two butterfly lineages that diverged >65 million years ago. Furthermore, characterization of spatial patterns of WntA expression during development suggests that alternative regulatory mechanisms underlie wing pattern variation in each system. Taken together, our results reveal a strikingly predictable molecular basis for phenotypic convergence over deep evolutionary time.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies

Amanda A. Pierce; Myron P. Zalucki; Marie Bangura; Milan Udawatta; Marcus R. Kronforst; Sonia Altizer; Juan Fernández Haeger; Jacobus C. de Roode

Range expansions can result in founder effects, increasing genetic differentiation between expanding populations and reducing genetic diversity along the expansion front. However, few studies have addressed these effects in long-distance migratory species, for which high dispersal ability might counter the effects of genetic drift. Monarchs (Danaus plexippus) are best known for undertaking a long-distance annual migration in North America, but have also dispersed around the world to form populations that do not migrate or travel only short distances. Here, we used microsatellite markers to assess genetic differentiation among 18 monarch populations and to determine worldwide colonization routes. Our results indicate that North American monarch populations connected by land show limited differentiation, probably because of the monarchs ability to migrate long distances. Conversely, we found high genetic differentiation between populations separated by large bodies of water. Moreover, we show evidence for serial founder effects across the Pacific, suggesting stepwise dispersal from a North American origin. These findings demonstrate that genetic drift played a major role in shaping allele frequencies and created genetic differentiation among newly formed populations. Thus, range expansion can give rise to genetic differentiation and declines in genetic diversity, even in highly mobile species.


Genome Biology and Evolution | 2013

Genome-Wide Characterization of Adaptation and Speciation in Tiger Swallowtail Butterflies Using De Novo Transcriptome Assemblies

Wei Zhang; Krushnamegh Kunte; Marcus R. Kronforst

Hybrid speciation appears to be rare in animals, yet characterization of possible examples offers to shed light on the genomic consequences of this unique phenomenon, as well as more general processes such as the role of adaptation in speciation. Here, we first generate transcriptome assemblies for a putative hybrid butterfly species, Papilio appalachiensis, its parental species, P. glaucus and P. canadensis, and an outgroup, P. polytes. Then, we use these data to infer genome-wide patterns of introgression and genomic mosaicism using both phylogenetic and population genetic approaches. Our results reveal that there is little genetic divergence among all three of the focal species, but the subset of gene trees that strongly support a specific tree topology suggest widespread sharing of genetic variation between P. appalachiensis and both parental species, likely as a result of hybrid speciation. We also find evidence for substantial shared genetic variation between P. glaucus and P. canadensis, which may be due to gene flow or ancestral variation. Consistent with previous work, we show that P. applachiensis is more similar to P. canadensis at Z-linked genes and more similar to P. glaucus at mitochondrial genes. We also identify a variety of targets of adaptive evolution, which appear to be enriched for traits that are likely to be important in the evolution of this butterfly system, such as pigmentation, hormone sensitivity, developmental processes, and cuticle formation. Overall, our results provide a genome-wide portrait of divergence and introgression associated with adaptation and speciation in an iconic butterfly radiation.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity

Anyi Mazo-Vargas; Carolina Concha; Luca Livraghi; Darli Massardo; Richard Wr Wallbank; Linlin Zhang; Joseph D Papador; Daniel Martinez-Najera; Chris D. Jiggins; Marcus R. Kronforst; Casper J. Breuker; Robert D. Reed; Nipam H. Patel; W. Owen McMillan; Arnaud Martin

Significance Our study assesses the long-held hypothesis that evolution of new gene functions underlies the diversification of animal forms. To do this, we systematically compared the patterning roles of a single gene across seven butterfly species. Under a null hypothesis of gene stasis, each knockout experiment should yield directly comparable phenotypes. We instead observed a varied repertoire of lineage-specific effects in different wing regions, demonstrating that the repeated modification of a key instructive signal was instrumental in the complex evolution of wing color patterns. These comparative data confirm the heuristic potential of CRISPR mutagenesis in nontraditional model organisms and illustrate the principle that biodiversity can emerge from the tinkering of homologous genetic factors. Butterfly wing patterns provide a rich comparative framework to study how morphological complexity develops and evolves. Here we used CRISPR/Cas9 somatic mutagenesis to test a patterning role for WntA, a signaling ligand gene previously identified as a hotspot of shape-tuning alleles involved in wing mimicry. We show that WntA loss-of-function causes multiple modifications of pattern elements in seven nymphalid butterfly species. In three butterflies with a conserved wing-pattern arrangement, WntA is necessary for the induction of stripe-like patterns known as symmetry systems and acquired a novel eyespot activator role specific to Vanessa forewings. In two Heliconius species, WntA specifies the boundaries between melanic fields and the light-color patterns that they contour. In the passionvine butterfly Agraulis, WntA removal shows opposite effects on adjacent pattern elements, revealing a dual role across the wing field. Finally, WntA acquired a divergent role in the patterning of interveinous patterns in the monarch, a basal nymphalid butterfly that lacks stripe-like symmetry systems. These results identify WntA as an instructive signal for the prepatterning of a biological system of exuberant diversity and illustrate how shifts in the deployment and effects of a single developmental gene underlie morphological change.


BioEssays | 2015

Divergence and gene flow among Darwin's finches: A genome-wide view of adaptive radiation driven by interspecies allele sharing

Daniela H. Palmer; Marcus R. Kronforst

A recent analysis of the genomes of Darwins finches revealed extensive interspecies allele sharing throughout the history of the radiation and identified a key locus responsible for morphological evolution in this group. The radiation of Darwins finches on the Galápagos archipelago has long been regarded as an iconic study system for field ecology and evolutionary biology. Coupled with an extensive history of field work, these latest findings affirm the increasing acceptance of introgressive hybridization, or gene flow between species, as a significant contributor to adaptive evolution. Here, we review and discuss these findings in relation to both classical work on Darwins finches and contemporary work showing similar evolutionary signatures in other biological systems. The continued unification of genomic data with field biology promises to further elucidate the molecular basis of adaptation in Darwins finches and well beyond.


Molecular Ecology | 2014

Phylogeography of Heliconius cydno and its closest relatives: disentangling their origin and diversification

Carlos F. Arias; Camilo Salazar; Claudia Rosales; Marcus R. Kronforst; Mauricio Linares; Eldredge Bermingham; W. Owen McMillan

The origins of the extraordinary diversity within the Neotropics have long fascinated biologists and naturalists. Yet, the underlying factors that have given rise to this diversity remain controversial. To test the relative importance of Quaternary climatic change and Neogene tectonic and paleogeographic reorganizations in the generation of biodiversity, we examine intraspecific variation across the Heliconius cydno radiation and compare this variation to that within the closely related Heliconius melpomene and Heliconius timareta radiations. Our data, which consist of both mtDNA and genome‐scan data from nearly 2250 amplified fragment length polymorphism (AFLP) loci, reveal a complex history of differentiation and admixture at different geographic scales. Both mtDNA and AFLP phylogenies suggest that H. timareta and H. cydno are probably geographic extremes of the same radiation that probably diverged from H. melpomene prior to the Pliocene–Pleistocene boundary, consistent with hypotheses of diversification that rely on geological events in the Pliocene. The mtDNA suggests that this radiation originated in Central America or the northwestern region of South America, with a subsequent colonization of the eastern and western slopes of the Andes. Our genome‐scan data indicate significant admixture among sympatric H. cydno/H. timareta and H. melpomene populations across the extensive geographic ranges of the two radiations. Within H. cydno, both mtDNA and AFLP data indicate significant population structure at local scales, with strong genetic differences even among adjacent H. cydno colour pattern races. These genetic patterns highlight the importance of past geoclimatic events, intraspecific gene flow, and local population differentiation in the origin and establishment of new adaptive forms.

Collaboration


Dive into the Marcus R. Kronforst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilson Rudinei Pires Moreira

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith R. Willmott

Florida Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Patricio A. Salazar

Florida Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Sofía Nogales

Pontificia Universidad Católica del Ecuador

View shared research outputs
Researchain Logo
Decentralizing Knowledge