Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus Söderberg is active.

Publication


Featured researches published by Marcus Söderberg.


Acta Radiologica | 2010

Automatic exposure control in computed tomography – an evaluation of systems from different manufacturers

Marcus Söderberg; Mikael Gunnarsson

Background: Today, practically all computed tomography (CT) systems are delivered with automatic exposure control (AEC) systems operating with tube current modulation in three dimensions. Each of these systems has different specifications and operates somewhat differently. Purpose: To evaluate AEC systems from four different CT scanner manufacturers: General Electric (GE), Philips, Siemens, and Toshiba, considering their potential for reducing radiation exposure to the patient while maintaining adequate image quality. Material and Methods: The dynamics (adaptation along the longitudinal axis) of tube current modulation of each AEC system were investigated by scanning an anthropomorphic chest phantom using both 16- and 64-slice CT scanners from each manufacturer with the AEC systems activated and inactivated. The radiation dose was estimated using the parameters in the DICOM image information and image quality was evaluated based on image noise (standard deviation of CT numbers) calculated in 0.5 cm2 circular regions of interest situated throughout the spine region of the chest phantom. Results: We found that tube current modulation dynamics were similar among the different AEC systems, especially between GE and Toshiba systems and between Philips and Siemens systems. Furthermore, the magnitude of the reduction in the exposure dose was considerable, in the range of 35–60%. However, in general the image noise increased when the AEC systems were used, especially in regions where the tube current was greatly decreased, such as the lung region. However, the variation in image noise among images obtained along the scanning direction was lower when using the AEC systems compared with fixed mAs. Conclusion: The AEC systems available in modern CT scanners can contribute to a significant reduction in radiation exposure to the patient and the image noise becomes more uniform within any given scan.


British Journal of Radiology | 2013

Six iterative reconstruction algorithms in brain CT- A phantom study on image quality at different radiation doses.

Askell Löve; Olsson Ml; Roger Siemund; Stålhammar F; Björkman-Burtscher Im; Marcus Söderberg

OBJECTIVE To evaluate the image quality produced by six different iterative reconstruction (IR) algorithms in four CT systems in the setting of brain CT, using different radiation dose levels and iterative image optimisation levels. METHODS An image quality phantom, supplied with a bone mimicking annulus, was examined using four CT systems from different vendors and four radiation dose levels. Acquisitions were reconstructed using conventional filtered back-projection (FBP), three levels of statistical IR and, when available, a model-based IR algorithm. The evaluated image quality parameters were CT numbers, uniformity, noise, noise-power spectra, low-contrast resolution and spatial resolution. RESULTS Compared with FBP, noise reduction was achieved by all six IR algorithms at all radiation dose levels, with further improvement seen at higher IR levels. Noise-power spectra revealed changes in noise distribution relative to the FBP for most statistical IR algorithms, especially the two model-based IR algorithms. Compared with FBP, variable degrees of improvements were seen in both objective and subjective low-contrast resolutions for all IR algorithms. Spatial resolution was improved with both model-based IR algorithms and one of the statistical IR algorithms. CONCLUSION The four statistical IR algorithms evaluated in the study all improved the general image quality compared with FBP, with improvement seen for most or all evaluated quality criteria. Further improvement was achieved with one of the model-based IR algorithms. ADVANCES IN KNOWLEDGE The six evaluated IR algorithms all improve the image quality in brain CT but show different strengths and weaknesses.


Journal of Spinal Disorders & Techniques | 2012

Optimization of Radiation Exposure and Image Quality of the Cone-beam O-arm Intraoperative Imaging System in Spinal Surgery.

Kasim Abul-Kasim; Marcus Söderberg; Eufrozina Selariu; Mikael Gunnarsson; Mehrsa Kherad; Acke Ohlin

Study Design Retrospective study. Objectives To optimize the radiation doses and image quality for the cone-beam O-arm surgical imaging system in spinal surgery. Summary of Background Neurovascular compromise has been reported after screw misplacement during thoracic pedicle screw insertion. The use of O-arm with or without navigation system during spinal surgery has been shown to lower the rate of screw misplacement. The main drawback of such imaging surgical systems is the high radiation exposure. Methods Chest phantom and cadaveric pig spine were examined on the O-arm with different scan settings: 2 were recommended by the O-arm manufacturer (120 kV/320 mAs, and 120 kV/128 mAs), and 3 low-dose settings (80 kV/80 mAs, 80 kV/40 mAs, and 60 kV/40 mAs). The radiation doses were estimated by Monte Carlo calculations. Objective evaluation of image quality included interobserver agreement in the measurement of pedicular width in chest phantom and assessment of screw placement in cadaveric pig spine. Results The effective dose/cm for 120 kV/320 mAs scan was 13, 26, and 69 times higher than those delivered with 80 kV/80 mAs, 80 kV/40 mAs, and 60 kV/40 mAs scans, respectively. Images with 60 kV/40 mAs were unreliable. Images with 80 kV/80 mAs were considered reliable with good interobserver agreement when measuring the pedicular width (random error 0.38 mm and intraclass correlation coefficient 0.979) and almost perfect agreement when evaluating the screw placement (&kgr; value 0.86). Conclusions The radiation doses of the O-arm system can be reduced 5 to 13 times without negative impact on image quality with regard to information required for spinal surgery.


Radiation Protection Dosimetry | 2010

The effect of different adaptation strengths on image quality and radiation dose using Siemens Care Dose 4D

Marcus Söderberg; Mikael Gunnarsson

The purpose of this study was to evaluate the effect of different choices of adaptation strengths on image quality and radiation exposure to the patient with Siemens automatic exposure control system called CARE Dose 4D. An anthropomorphic chest phantom was used to simulate the patient and computed tomography scans were performed with a Siemens SOMATOM Sensation 16 and 64. Owing to adaptation strengths, a considerable reduction (26.6-51.5 % and 27.5-49.5 % for Sensation 16 and Sensation 64, respectively) in the radiation dose was found when compared with using a fixed tube current. There was a substantial difference in the image quality (image noise) between the adaptation strengths. Independent of selected adaptation strengths, the level of image noise throughout the chest phantom increased when CARE Dose 4D was used (p < 0.0001). We conclude that the adaptation strengths can be used to obtain user-specified modifications to image quality or radiation exposure to the patient.


The Journal of Nuclear Medicine | 2012

A Compartmental Model for Biokinetics and Dosimetry of 18F-Choline in Prostate Cancer Patients

A. Giussani; T. Janzen; Helena Uusijärvi-Lizana; Federico Tavola; Maria Zankl; Marie Sydoff; Anders Bjartell; Sigrid Leide-Svegborn; Marcus Söderberg; Sören Mattsson; Christoph Hoeschen; Marie-Claire Cantone

PET with 18F-choline (18F-FCH) is used in the diagnosis of prostate cancer and its recurrences. In this work, biodistribution data from a recent study conducted at Skåne University Hospital Malmö were used for the development of a biokinetic and dosimetric model. Methods: The biodistribution of 18F-FCH was followed for 10 patients using PET up to 4 h after administration. Activity concentrations in blood and urine samples were also determined. A compartmental model structure was developed, and values of the model parameters were obtained for each single patient and for a reference patient using a population kinetic approach. Radiation doses to the organs were determined using computational (voxel) phantoms for the determination of the S factors. Results: The model structure consists of a central exchange compartment (blood), 2 compartments each for the liver and kidneys, 1 for spleen, 1 for urinary bladder, and 1 generic compartment accounting for the remaining material. The model can successfully describe the individual patients’ data. The parameters showing the greatest interindividual variations are the blood volume (the clearance process is rapid, and early blood data are not available for several patients) and the transfer out from liver (the physical half-life of 18F is too short to follow this long-term process with the necessary accuracy). The organs receiving the highest doses are the kidneys (reference patient, 0.079 mGy/MBq; individual values, 0.033–0.105 mGy/MBq) and the liver (reference patient, 0.062 mGy/MBq; individual values, 0.036–0.082 mGy/MBq). The dose to the urinary bladder wall of the reference patient varies between 0.017 and 0.030 mGy/MBq, depending on the assumptions on bladder voiding. Conclusion: The model gives a satisfactory description of the biodistribution of 18F-FCH and realistic estimates of the radiation dose received by the patients.


Radiation Protection Dosimetry | 2010

POST-PROCESSING IMAGE FILTRATION ENABLING DOSE REDUCTION IN STANDARD ABDOMINAL CT.

Peter Leander; Marcus Söderberg; Tobias Fält; Mikael Gunnarsson; Ida Albertsson

The collective effective radiation dose to the population is increasing due to a higher use of computerised tomography. SharpView AB, Linköping, Sweden, has developed an adaptive non-linear post-processing image filtration that may enable the use of lower radiation doses. The present study assessed if a lower dose with image filtration had the same image quality as a higher dose without the filter applied. All imaging was performed on a Siemens Somatom Sensation 16 CT. The parameters used were 120 kV and 200 mAs (40 patients) and 130 mAs without and with image filtering (40 patients), respectively. All studies were quantitatively evaluated for noise and image quality was assessed by visual grading characteristics (VGC) analysis. After image filtration, the noise in the processed images was lowered and the image quality was improved as shown by the VGC analysis. However, images using the higher dose were still ranked as the best in five out of eight criteria as shown by the VGC analysis. Image filtration enhances CT images significantly and further studies will show if 130 mAs with image filtration may be sufficient for clinically general abdominal CT.


Radiation Protection Dosimetry | 2010

Simulated dose reduction by adding artificial noise to measured raw data: a validation study.

Marcus Söderberg; Mikael Gunnarsson; Mats Nilsson

The purpose of this study was to verify and validate a noise simulation tool called Dose Tutor (VAMP GmbH) in terms of level and texture of the simulated noise. By adding artificial noise to measured computed tomography (CT) raw data, a scan acquired with a lower dose (mAs) than the actual one can be simulated. A homogeneous polyethylene phantom and an anthropomorphic chest phantom were scanned for different mAs levels, tube voltages, slice thicknesses and reconstruction kernels. The simulated noise levels were compared with the noise levels in real transverse slice images actually acquired with corresponding mAs values. In general, the noise comparisons showed acceptable agreement in magnitude (<20 % deviation in pixel standard deviation). Also, the calculated noise power spectra were similar, which indicates that the noise texture is correctly reproduced. In conclusion, this study establishes that the Dose Tutor might be a useful tool for estimating the dose reduction potential for CT protocols.


Journal of Computer Assisted Tomography | 2015

Material decomposition in dual-energy computed tomography separates high-Z elements from iodine, identifying potential contrast media tailored for dual contrast medium examinations

Tobias Fält; Marcus Söderberg; Johan Wassélius; Peter Leander

Objective The aim of this study was to determine the potential of different high-Z elements to act as contrast media (CMs) alongside iodine (I) in dual-CM, dual-energy (DE) computed tomography examinations. Methods Gadolinium (Gd), tantalum (Ta), wolfram (W), gold (Au), and bismuth (Bi) in addition to I were examined at all available kilovolt settings in a DE computed tomography scanner. Dual-energy ratios were calculated by dividing attenuation at low kilovolt by attenuation at high kilovolt. Dual-energy data sets were loaded into material decomposition software to evaluate separation of the elements from I. Results The DE ratios of Ta, W, and Au ranged between 0.9 and 1.2, being considerably lower than I at 1.9 to 2.6. These elements were completely separated from I using material decomposition. Gadolinium and Bi were more similar to I at 1.4 to 1.9. However, separation was nearly complete for Bi and suboptimal for Gd. Conclusions Tantalum, W, and Au are ideal candidates for dual-CM examinations, whereas Bi is a slightly weaker candidate.


Radiation Protection Dosimetry | 2016

OVERVIEW, PRACTICAL TIPS AND POTENTIAL PITFALLS OF USING AUTOMATIC EXPOSURE CONTROL IN CT: SIEMENS CARE DOSE 4D

Marcus Söderberg

Today, computed tomography (CT) systems routinely use automatic exposure control (AEC), which modulates the tube current. However, for optimal use, there are several aspects of an AEC system that need to be considered. The purpose of this study was to provide an overview of the Siemens CARE Dose 4D AEC system, discuss practical tips and demonstrate potential pitfalls. Two adult anthropomorphic phantoms were examined using two different Siemens CT systems. When optimising the CT radiation dose and image quality, the projection angle of the localiser, patient centring, protocol selection, scanning direction and the use of protective devices requires special attention.


Acta Radiologica | 2017

Improvements to image quality using hybrid and model-based iterative reconstructions: a phantom study.

Marie-Louise Aurumskjöld; Kristina Ydström; Anders Tingberg; Marcus Söderberg

Background The number of computed tomography (CT) examinations is increasing and leading to an increase in total patient exposure. It is therefore important to optimize CT scan imaging conditions in order to reduce the radiation dose. The introduction of iterative reconstruction methods has enabled an improvement in image quality and a reduction in radiation dose. Purpose To investigate how image quality depends on reconstruction method and to discuss patient dose reduction resulting from the use of hybrid and model-based iterative reconstruction. Material and Methods An image quality phantom (Catphan® 600) and an anthropomorphic torso phantom were examined on a Philips Brilliance iCT. The image quality was evaluated in terms of CT numbers, noise, noise power spectra (NPS), contrast-to-noise ratio (CNR), low-contrast resolution, and spatial resolution for different scan parameters and dose levels. The images were reconstructed using filtered back projection (FBP) and different settings of hybrid (iDose4) and model-based (IMR) iterative reconstruction methods. Results iDose4 decreased the noise by 15–45% compared with FBP depending on the level of iDose4. The IMR reduced the noise even further, by 60–75% compared to FBP. The results are independent of dose. The NPS showed changes in the noise distribution for different reconstruction methods. The low-contrast resolution and CNR were improved with iDose4, and the improvement was even greater with IMR. Conclusion There is great potential to reduce noise and thereby improve image quality by using hybrid or, in particular, model-based iterative reconstruction methods, or to lower radiation dose and maintain image quality.

Collaboration


Dive into the Marcus Söderberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge