Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus W. Feldman is active.

Publication


Featured researches published by Marcus W. Feldman.


Science | 2008

Worldwide Human Relationships Inferred from Genome-Wide Patterns of Variation

Jun Li; Devin Absher; Hua Tang; Audrey Southwick; Amanda M Casto; Howard M. Cann; Gregory S. Barsh; Marcus W. Feldman; Luigi Luca Cavalli-Sforza; Richard M. Myers

Human genetic diversity is shaped by both demographic and biological factors and has fundamental implications for understanding the genetic basis of diseases. We studied 938 unrelated individuals from 51 populations of the Human Genome Diversity Panel at 650,000 common single-nucleotide polymorphism loci. Individual ancestry and population substructure were detectable with very high resolution. The relationship between haplotype heterozygosity and geography was consistent with the hypothesis of a serial founder effect with a single origin in sub-Saharan Africa. In addition, we observed a pattern of ancestral allele frequency distributions that reflects variation in population dynamics among geographic regions. This data set allows the most comprehensive characterization to date of human genetic variation.


Nature | 2002

Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors

Benjamin Kerr; Margaret A. Riley; Marcus W. Feldman; Brendan J. M. Bohannan

One of the central aims of ecology is to identify mechanisms that maintain biodiversity. Numerous theoretical models have shown that competing species can coexist if ecological processes such as dispersal, movement, and interaction occur over small spatial scales. In particular, this may be the case for non-transitive communities, that is, those without strict competitive hierarchies. The classic non-transitive system involves a community of three competing species satisfying a relationship similar to the childrens game rock–paper–scissors, where rock crushes scissors, scissors cuts paper, and paper covers rock. Such relationships have been demonstrated in several natural systems. Some models predict that local interaction and dispersal are sufficient to ensure coexistence of all three species in such a community, whereas diversity is lost when ecological processes occur over larger scales. Here, we test these predictions empirically using a non-transitive model community containing three populations of Escherichia coli. We find that diversity is rapidly lost in our experimental community when dispersal and interaction occur over relatively large spatial scales, whereas all populations coexist when ecological processes are localized.


Nature Genetics | 2000

Y chromosome sequence variation and the history of human populations

Peter A. Underhill; Peidong Shen; Alice A. Lin; Li Jin; Giuseppe Passarino; Wei H. Yang; Erin Kauffman; Batsheva Bonne-Tamir; Jaume Bertranpetit; Paolo Francalacci; Muntaser Ibrahim; Trefor Jenkins; S. Qasim Mehdi; Mark Seielstad; R. Spencer Wells; Alberto Piazza; Ronald W. Davis; Marcus W. Feldman; Luigi Luca Cavalli-Sforza; J. Oefner

Binary polymorphisms associated with the non-recombining region of the human Y chromosome (NRY) preserve the paternal genetic legacy of our species that has persisted to the present, permitting inference of human evolution, population affinity and demographic history. We used denaturing high-performance liquid chromatography (DHPLC; ref. 2) to identify 160 of the 166 bi-allelic and 1 tri-allelic site that formed a parsimonious genealogy of 116 haplotypes, several of which display distinct population affinities based on the analysis of 1062 globally representative individuals. A minority of contemporary East Africans and Khoisan represent the descendants of the most ancestral patrilineages of anatomically modern humans that left Africa between 35,000 and 89,000 years ago.


Behavioral and Brain Sciences | 2000

Niche construction, biological evolution, and cultural change

Kevin N. Laland; John Odling-Smee; Marcus W. Feldman

We propose a conceptual model that maps the causal pathways relating biological evolution to cultural change. It builds on conventional evolutionary theory by placing emphasis on the capacity of organisms to modify sources of natural selection in their environment (niche construction) and by broadening the evolutionary dynamic to incorporate ontogenetic and cultural processes. In this model, phenotypes have a much more active role in evolution than generally conceived. This sheds light on hominid evolution, on the evolution of culture, and on altruism and cooperation. Culture amplifies the capacity of human beings to modify sources of natural selection in their environments to the point where that capacity raises some new questions about the processes of human adaptation.


Genome Research | 2009

Signals of recent positive selection in a worldwide sample of human populations

Joseph K. Pickrell; Graham Coop; John Novembre; Sridhar Kudaravalli; Jun Li; Devin Absher; Balaji S. Srinivasan; Gregory S. Barsh; Richard M. Myers; Marcus W. Feldman; Jonathan K. Pritchard

Genome-wide scans for recent positive selection in humans have yielded insight into the mechanisms underlying the extensive phenotypic diversity in our species, but have focused on a limited number of populations. Here, we present an analysis of recent selection in a global sample of 53 populations, using genotype data from the Human Genome Diversity-CEPH Panel. We refine the geographic distributions of known selective sweeps, and find extensive overlap between these distributions for populations in the same continental region but limited overlap between populations outside these groupings. We present several examples of previously unrecognized candidate targets of selection, including signals at a number of genes in the NRG-ERBB4 developmental pathway in non-African populations. Analysis of recently identified genes involved in complex diseases suggests that there has been selection on loci involved in susceptibility to type II diabetes. Finally, we search for local adaptation between geographically close populations, and highlight several examples.


Nature Genetics | 2003

The application of molecular genetic approaches to the study of human evolution

Luigi Luca Cavalli-Sforza; Marcus W. Feldman

The past decade of advances in molecular genetic technology has heralded a new era for all evolutionary studies, but especially the science of human evolution. Data on various kinds of DNA variation in human populations have rapidly accumulated. There is increasing recognition of the importance of this variation for medicine and developmental biology and for understanding the history of our species. Haploid markers from mitochondrial DNA and the Y chromosome have proven invaluable for generating a standard model for evolution of modern humans. Conclusions from earlier research on protein polymorphisms have been generally supported by more sophisticated DNA analysis. Co-evolution of genes with language and some slowly evolving cultural traits, together with the genetic evolution of commensals and parasites that have accompanied modern humans in their expansion from Africa to the other continents, supports and supplements the standard model of genetic evolution. The advances in our understanding of the evolutionary history of humans attests to the advantages of multidisciplinary research.


Genetics | 2006

An exact nonparametric method for inferring mosaic structure in sequence triplets.

Maciej F. Boni; David Posada; Marcus W. Feldman

Statistical tests for detecting mosaic structure or recombination among nucleotide sequences usually rely on identifying a pattern or a signal that would be unlikely to appear under clonal reproduction. Dozens of such tests have been described, but many are hampered by long running times, confounding of selection and recombination, and/or inability to isolate the mosaic-producing event. We introduce a test that is exact, nonparametric, rapidly computable, free of the infinite-sites assumption, able to distinguish between recombination and variation in mutation/fixation rates, and able to identify the breakpoints and sequences involved in the mosaic-producing event. Our test considers three sequences at a time: two parent sequences that may have recombined, with one or two breakpoints, to form the third sequence (the child sequence). Excess similarity of the child sequence to a candidate recombinant of the parents is a sign of recombination; we take the maximum value of this excess similarity as our test statistic Δm,n,b. We present a method for rapidly calculating the distribution of Δm,n,b and demonstrate that it has comparable power to and a much improved running time over previous methods, especially in detecting recombination in large data sets.


PLOS Biology | 2008

High Functional Diversity in Mycobacterium tuberculosis Driven by Genetic Drift and Human Demography

Ruth Hershberg; Mikhail Lipatov; Peter M. Small; Hadar H. Sheffer; Stefan Niemann; Jared C Roach; Kristin Kremer; Dmitri A. Petrov; Marcus W. Feldman; Sebastien Gagneux

Mycobacterium tuberculosis infects one third of the human world population and kills someone every 15 seconds. For more than a century, scientists and clinicians have been distinguishing between the human- and animal-adapted members of the M. tuberculosis complex (MTBC). However, all human-adapted strains of MTBC have traditionally been considered to be essentially identical. We surveyed sequence diversity within a global collection of strains belonging to MTBC using seven megabase pairs of DNA sequence data. We show that the members of MTBC affecting humans are more genetically diverse than generally assumed, and that this diversity can be linked to human demographic and migratory events. We further demonstrate that these organisms are under extremely reduced purifying selection and that, as a result of increased genetic drift, much of this genetic diversity is likely to have functional consequences. Our findings suggest that the current increases in human population, urbanization, and global travel, combined with the population genetic characteristics of M. tuberculosis described here, could contribute to the emergence and spread of drug-resistant tuberculosis.


Genetics | 2005

The Role of Selection in the Evolution of Human Mitochondrial Genomes

Toomas Kivisild; Peidong Shen; Dennis P. Wall; Bao H. Do; Raphael Sung; Karen Davis; Giuseppe Passarino; Peter A. Underhill; Curt Scharfe; Antonio Torroni; Rosaria Scozzari; David Modiano; Alfredo Coppa; Peter de Knijff; Marcus W. Feldman; Luca Cavalli-Sforza; Peter J. Oefner

High mutation rate in mammalian mitochondrial DNA generates a highly divergent pool of alleles even within species that have dispersed and expanded in size recently. Phylogenetic analysis of 277 human mitochondrial genomes revealed a significant (P < 0.01) excess of rRNA and nonsynonymous base substitutions among hotspots of recurrent mutation. Most hotspots involved transitions from guanine to adenine that, with thymine-to-cytosine transitions, illustrate the asymmetric bias in codon usage at synonymous sites on the heavy-strand DNA. The mitochondrion-encoded tRNAThr varied significantly more than any other tRNA gene. Threonine and valine codons were involved in 259 of the 414 amino acid replacements observed. The ratio of nonsynonymous changes from and to threonine and valine differed significantly (P = 0.003) between populations with neutral (22/58) and populations with significantly negative Tajimas D values (70/76), independent of their geographic location. In contrast to a recent suggestion that the excess of nonsilent mutations is characteristic of Arctic populations, implying their role in cold adaptation, we demonstrate that the surplus of nonsynonymous mutations is a general feature of the young branches of the phylogenetic tree, affecting also those that are found only in Africa. We introduce a new calibration method of the mutation rate of synonymous transitions to estimate the coalescent times of mtDNA haplogroups.


PLOS Genetics | 2005

Clines, Clusters, and the Effect of Study Design on the Inference of Human Population Structure

Noah A. Rosenberg; Saurabh Mahajan; Chengfeng Zhao; Jonathan K. Pritchard; Marcus W. Feldman

Previously, we observed that without using prior information about individual sampling locations, a clustering algorithm applied to multilocus genotypes from worldwide human populations produced genetic clusters largely coincident with major geographic regions. It has been argued, however, that the degree of clustering is diminished by use of samples with greater uniformity in geographic distribution, and that the clusters we identified were a consequence of uneven sampling along genetic clines. Expanding our earlier dataset from 377 to 993 markers, we systematically examine the influence of several study design variables—sample size, number of loci, number of clusters, assumptions about correlations in allele frequencies across populations, and the geographic dispersion of the sample—on the “clusteredness” of individuals. With all other variables held constant, geographic dispersion is seen to have comparatively little effect on the degree of clustering. Examination of the relationship between genetic and geographic distance supports a view in which the clusters arise not as an artifact of the sampling scheme, but from small discontinuous jumps in genetic distance for most population pairs on opposite sides of geographic barriers, in comparison with genetic distance for pairs on the same side. Thus, analysis of the 993-locus dataset corroborates our earlier results: if enough markers are used with a sufficiently large worldwide sample, individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe, with some individuals from intermediate geographic locations having mixed membership in the clusters that correspond to neighboring regions.

Collaboration


Dive into the Marcus W. Feldman's collaboration.

Top Co-Authors

Avatar

Shuzhuo Li

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenichi Aoki

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyi Jin

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aviv Bergman

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge