Mareike Braeckevelt
Helmholtz Centre for Environmental Research - UFZ
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mareike Braeckevelt.
Chemosphere | 2009
Gwenaël Imfeld; Mareike Braeckevelt; Peter Kuschk; Hans H. Richnow
Physical, chemical and biological processes interact and work in concert during attenuation of organic chemicals in wetland systems. This review summarizes the recent progress made towards understanding how the various mechanisms attributed to organic chemicals removal interact to form a functioning wetland. We also discuss the main degradation pathways for different groups of contaminants and examine some of the key characteristics of constructed wetlands that control the removal of organic chemicals. Furthermore, we address possible comprehensive approaches and recent techniques to follow up in situ processes within the system, especially those involved in the biodegradation processes.
Applied Microbiology and Biotechnology | 2012
Mareike Braeckevelt; Anko Fischer; Matthias Kästner
Microbial processes govern the fate of organic contaminants in aquifers to a major extent. Therefore, the evaluation of in situ biodegradation is essential for the implementation of Natural Attenuation (NA) concepts in groundwater management. Laboratory degradation experiments and biogeochemical approaches are often biased and provide only indirect evidence of in situ degradation potential. Compound-Specific Isotope Analysis (CSIA) is at present among the most promising tools for assessment of the in situ contaminant degradation within aquifers. One- and two-dimensional (2D) CSIA provides qualitative and quantitative information on in situ contaminant transformation; it is applicable for proving in situ degradation and characterizing degradation conditions and reaction mechanisms. However, field application of CSIA is challenging due to a number of influencing factors, namely those affecting the observed isotope fractionation during biodegradation (e.g., non-isotope-fractionating rate-limiting steps, limited bioavailability), potential isotope effects caused by processes other than biodegradation (e.g., sorption, volatilization, diffusion), as well as non-isotope-fractionating physical processes such as dispersion and dilution. This mini-review aims at guiding practical users towards the sound interpretation of CSIA field data for the characterization of in situ contaminant degradation. It focuses on the relevance of various constraints and influencing factors in CSIA field applications and provides advice on when and how to account for these constraints. We first evaluate factors that can influence isotope fractionation during biodegradation, as well as potential isotope-fractionating and non-isotope-fractionating physical processes governing observed isotope fractionation in the field. Finally, the potentials of the CSIA approach for site characterization and the proper ways to account for various constraints are illustrated by means of a comprehensive CSIA field study at the benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated site Zeitz.
Chemosphere | 2012
Zhongbing Chen; Shubiao Wu; Mareike Braeckevelt; Heidrun Paschke; Matthias Kästner; H. Köser; Peter Kuschk
In order to characterize the effect of vegetation on performance of constructed wetlands (CWs) treating low and high chlorinated hydrocarbon, two pilot-scale horizontal subsurface flow (HSSF) CWs (planted with Phragmites australis and unplanted) treating sulphate rich groundwater contaminated with MCB (monochlorobenzene, as a low chlorinated hydrocarbon), (about 10 mg L(-1)), and PCE (perchloroethylene, as a high chlorinated hydrocarbon), (about 2 mg L(-1)), were examined. With mean MCB inflow load of 299 mg m(-2) d(-1), the removal rate was 58 and 208 mg m(-2) d(-1) in the unplanted and planted wetland, respectively, after 4 m from the inlet. PCE was almost completely removed in both wetlands with mean inflow load of 49 mg m(-2) d(-1). However, toxic metabolites cis-1,2-DCE (dichloroethene) and VC (vinyl chloride) accumulated in the unplanted wetland; up to 70% and 25% of PCE was dechlorinated to cis-1,2-DCE and VC after 4 m from the inlet, respectively. Because of high sulphate concentration (around 850 mg L(-1)) in the groundwater, the plant derived organic carbon caused sulphide formation (up to 15 mg L(-1)) in the planted wetland, which impaired the MCB removal but not statistically significant. The results showed significant enhancement of vegetation on the removal of the low chlorinated hydrocarbon MCB, which is probably due to the fact that aerobic MCB degraders are benefited from the oxygen released by plant roots. Vegetation also stimulated completely dechlorination of PCE due to plant derived organic carbon, which is potentially to provide electron donor for dechlorination process. The plant derived organic carbon also stimulated dissimilatory sulphate reduction, which subsequently have negative effect on MCB removal.
Water Research | 2012
Shubiao Wu; Zhongbing Chen; Mareike Braeckevelt; Eva M. Seeger; Renjie Dong; Matthias Kästner; Heidrun Paschke; Anja Hahn; Gernot Kayser; Peter Kuschk
Long-term investigations were carried out in two pilot-scale horizontal subsurface flow constructed wetlands (planted and unplanted) with an iron-rich soil matrix for treating sulphate-rich groundwater which was contaminated with low concentrations of chlorinated hydrocarbons. The temporal and spatial dynamics of pore-water sulphide, Fe(II) and phosphate concentrations in the wetland beds were characterized and the seasonal effects on sulphide production and nitrification inhibition were evaluated. The results demonstrated that the pore-water sulphide concentrations gradually increased from less than 0.2 mg/L in 2005 to annual average concentrations of 15 mg/L in 2010, while the pore-water Fe(II) concentrations decreased from 35.4 mg/L to 0.3 mg/L. From 2005 to 2010, the phosphate removal efficiency declined from 91% to 10% under a relatively constant inflow concentration of 5 mg/L. The pronounced effect of plants was accompanied by a higher sulphate reduction and ammonium oxidation in the planted bed, as compared to the unplanted control. A high tolerance of plants towards sulphide toxicity was observed, which might be due to the detoxification of sulphide by oxygen released by the roots. However, during the period of 2009-2010, the nitrification was negatively impacted by the sulphide production as the reduction in the removal of ammonium from 75% to 42% (with inflow concentration of 55 mg/L) correlated with the increasing mean annual sulphide concentrations. The effect of the detoxification of sulphide and the immobilization of phosphate by the application of the iron-rich soil matrix in the initial years was proven; however, the life-span of this effect should not only be taken into consideration in further design but also in scientific studies.
International Journal of Phytoremediation | 2011
Mareike Braeckevelt; Eva M. Seeger; Heidrun Paschke; Peter Kuschk; Matthias Kaestner
Mixed groundwater contaminations by chlorinated volatile organic compounds (VOC) cause environmental hazards if contaminated groundwater discharges into surface waters and river floodplains. Constructed wetlands (CW) or engineered natural wetlands provide a promising technology for the protection of sensitive water bodies. We adapted a constructed wetland able to treat monochlorobenzene (MCB) contaminated groundwater to a mixture of MCB and tetrachloroethene (PCE), representing low and high chlorinated model VOC. Simultaneous treatment of both compounds was efficient after an adaptation time of 2½ years. Removal of MCB was temporarily impaired by PCE addition, but after adaptation a MCB concentration decrease of up to 64% (55.3 μmol L−1) was observed. Oxygen availability in the rhizosphere was relatively low, leading to sub-optimal MCB elimination but providing also appropriate conditions for PCE dechlorination. PCE and metabolites concentration patterns indicated a very slow system adaptation. However, under steady state conditions complete removal of PCE inflow concentrations of 10–15 μmol L−1 was achieved with negligible concentrations of chlorinated metabolites in the outflow. Recovery of total dechlorination metabolite loads corresponding to 100%, and ethene loads corresponding to 30% of the PCE inflow load provided evidence for complete reductive dechlorination, corroborated by the detection of Dehalococcoides sp.
Engineering in Life Sciences | 2011
Mareike Braeckevelt; Matthias Kaestner; Peter Kuschk
Constructed wetlands are a promising technology to protect river flood plains against the impact of contaminated groundwater. They are suitable for the treatment of waters contaminated with monochlorobenzene and perchloroethene. However, the removal performance differs with the operation conditions, and generally, transferable performance data are not yet available. In this study, removal efficiencies were determined and the dominant removal processes for monochlorobenzene and perchloroethene were evaluated under various operation conditions in helophyte rhizosphere reactors. Monochlorobenzene removal was very efficient (>99%) under low carbon load (overall oxic) and moderate carbon load (overall reduced) conditions. Higher loads of easily degradable carbon (acetate, 300 mg/L) impaired the elimination of monochlorobenzene (removal of 72−96%). Microbial reductive dechlorination of perchloroethene was not detected in the rhizosphere under low carbon load, sulphate reduction, and high‐carbon load conditions. Nonetheless, considerable amounts of perchloroethene were eliminated (79−87%), presumably by plant uptake and phytovolatilisation. Under fluctuating moderate carbon load conditions, perchloroethene dechlorination was initiated, and trichloroethene and cis‐dichloroethene production showed that a minimum of 10% of the perchloroethene inflow load was dechlorinated. Sulphate reduction and the associated sulphide toxicity showed to constitute a hazard for constructed wetland treatment of sulphate containing groundwater contaminated with chlorinated volatile organic compounds, causing a decrease in removal efficiencies by 50 and 20% for monochlorobenzene and perchloroethene, respectively.
Environmental Pollution | 2007
Mareike Braeckevelt; Hemal Rokadia; Gwenaël Imfeld; Nicole Stelzer; Heidrun Paschke; Peter Kuschk; Matthias Kästner; Hans-H. Richnow; Stefanie Weber
Ecological Engineering | 2008
Mareike Braeckevelt; Gabriele Mirschel; Arndt Wiessner; Michael Rueckert; Nils Reiche; Carsten Vogt; Andrea Schultz; Heidrun Paschke; Peter Kuschk; Matthias Kaestner
Ecological Engineering | 2011
Mareike Braeckevelt; Nils Reiche; Stefan Trapp; Arndt Wiessner; Heidrun Paschke; Peter Kuschk; Matthias Kaestner
Water Science and Technology | 2007
Mareike Braeckevelt; H. Rokadia; G. Mirschel; S. Weber; G. Imfeld; N. Stelzer; Peter Kuschk; Matthias Kästner; Hans Herrmann Richnow